Mostrando entradas con la etiqueta Científicas. Mostrar todas las entradas
Mostrando entradas con la etiqueta Científicas. Mostrar todas las entradas

sábado, 13 de agosto de 2016

Fabricio Ballarini: “Más ciencia es más libertad”

No soy un divulgador”, se apresura en aclarar Ballarini. “Soy un científico que sabe contar las cosas que hace y lo hace desde el lado pasional que, por otra parte, es como yo soy. Sé divulgar lo que hago en materia de ciencia. Y tengo mis limitaciones”, reconoce. 


Todo comenzó con su grupo reunido, interrogándose; y tomando la decisión de comenzar a dar charlas para pequeños grupos de docentes. A poco de andar cayeron en la cuenta de que llegar a un universo mayor de docentes iba a demandarles mucho tiempo. Optaron, entonces, por correr un riesgo haciendo una convocatoria abierta; y para su sorpresa, se anotaron 800 docentes en tres días. “Nos dimos cuenta de que existía un interés que habíamos subes-timado”, afirma el investigador del Conicet. Y lo que fue un tímido intento se transformó en una bola de nieve, llegando a realizar más de una docena de jornadas multitudinarias.

Mañana, una de esas convocatorias se realizará en Rosario y tendrá lugar en el Salón de Usos Múltiples de la Facultad de Arquitectura, Planeamiento y Diseño de la UNR, de Riobamba 220 bis. Ballarini, que será uno de los dictantes, re-cuerda que “fue en 2008 cuan-do empezamos a hacer demostraciones en escuelas, tratando de buscar cómo mejorar la estrategia de la enseñanza de las ciencias. Estaba terminando el doctorado y tenía una pregunta que estaba vinculada con una investigación, y a partir de los resulta-dos que obtuve me pareció que la podía extrapolar al ambiente educativo e intentar hacer una experiencia que les reportara a los estudiantes su aceptación de la ciencia; a la vez que podría transformarse en un buen material para los docentes, motivándolos a recurrir a métodos innovadores de enseñanza”.

Ballarini no puede ocultar su entusiasmo, y lo expresa: “Allí descubrí dos cosas: que los docentes estaban muy entusiasmado y que había un vacío en la educación Y tratamos de brindar contenido científico a esa comunidad ya que no había nada”.

El grupo está por presentar un libro para regalar, >Educando al cerebro I>. Tiene una web (www.educandoalcerebro.com.ar); está en Facebook, “Educando al cerebro”, sitio en el que cuentan con muchos seguidores. Llevan hechos algunos videos. Fueron a Uru-guay. Y se han convertido en una ONG, mediante la cual acaban de recibir un subsidio para hacer investigación. “En dos años y medio hemos tenido un crecimiento increíble”, se enorgullece Ballarini.

En los encuentros suelen recurrir a un test que está basado en el comportamiento del cerebro cuando se requiere apelar a los recuerdos; siguiendo el cual, diseñan un experimento en el aula. Así lo explica Fabricio Ballarini: “Tomamos un protocolo de aprendizaje cualquiera; puede ser que las personas apelen a un recuerdo o mostramos un dibujo; a los chicos más chicos les contamos un cuento y nosotros tratamos de modularlo, de mejorarlo para que ese re-cuerdo quede fijado. Y vimos que las experiencias que están cercanas a cuestiones que fue-ron sorprendentes y que asombran se recuerdan mucho más. Por eso recurro al episodio de las Torres Gemelas o a un nacimiento, u otro tipo de experiencia; y lo que obtuvimos fue que el recuerdo, en esos casos, tiene más fuerza y, aparte, recordamos cuestiones periféricas que su-cedieron cercanas al recuerdo principal y que, de otra manera las hubiésemos olvidado”. 

—¿Aplicar esta metodología es tan sorprendente como el intento que hicieron para contactarse con los medios?
—Esa fue una locura que salió bien. Fue correr un riesgo. Fue una experiencia que se reveló como muy útil porque nos dimos a conocer y porque pu-dimos hacer en vivo la experiencia, a la vez que cada uno de los oyentes “experimentó en carne propia” nuestra propuesta. Cada oyente se convirtió en un sujeto experimental de su propia experiencia de aprendizaje. Los oyentes que lo entendieron no lo van a olvidar jamás. 

—Lo interesante es que se les abrieron las puertas a un público masivo…
—Sí. Les mandé un email. Me presenté como becario del Conicet que estaba haciendo un trabajo de investigación, y la gente de Vorterix, con Pergolini a la cabeza, entendió rápidamente; él es un hombre muy informado en el tema de las ciencias y accedió a hacer-lo en vivo. Por supuesto lo hablamos mucho, ajustamos los detalles y nos largamos. Estuvo encantado de hacerlo. Generamos un vínculo a par-tir de esa experiencia y nos abrió las puertas de la radio a tal punto que su propio pro-grama tiene un micro de cien-cia grabado y animado; y, de toda la programación de su radio que es de rock, el micro de ciencia es el más visitado. Algunos han llegado a recibir 350.000 vistas, que es mucho más de las que obtiene un re-cital de rock.

Ballarini, el joven doctor en ciencias biológicas e investigador del instituto de neurociencias del Conicet, “científico utópico” –como él mismo se define– y autor del libro >REC>, de editorial Sudamericana, cree firmemente que es el modo de contarla a la ciencia la que puede hacerla más atractiva. “Esto fue por la posibilidad de poder contar las cosas desde otro lado, a un buen número de docentes re-unidos y poder hacerlo, al mismo tiempo, en un medio masivo de comunicación”, sostiene. 

—Recurrir a un experimento siguiendo la metodología científica y realizarlo a través de medios masivos, ¿puede agregar valor a la divulgación de la ciencia?
—Me encanta esa visión. Más, me gustaría tener un programa en el que no solamente comunicáramos ciencia, sino cómo hacer experimentos; porque es la manera indirecta de aprendizaje efectivo. Yo vivo haciendo experimentos y puedo asegurar que es fasci-nante el momento de llegar al final para poder ver el resultado. Cuando me aproximo al resultado siento una mezcla de nerviosismo y emoción enormes. Si somos capaces de contárselo a los chicos va a operar como un imán.

La ciencia, como la política, es uno de los productos de la cultura de un pueblo y se comportan como un tejido de mutua influencia; a apropósito de esto, Ballarini hace mención a una intervención suya en la radio cuando, al hablar de adicciones, se comparaban drogas consideradas ilegales con el consumo de sustancias tóxicas aceptadas socialmente, como el tabaco y el alcohol.

“De lo que estaba hablando era de nuestra cultura, de cómo sustancias que son muy nocivas, al ser aceptadas por la sociedad, pocos son los que reparan en su poder letal y en el deterioro que ocasionan a la salud humana. Y allí, en ese mismo momento, me pregunté para qué está la ciencia. La ciencia está para agregar evidencia al conocimiento y favorecer la vida de las personas. Si la humanidad no usa la ciencia para eso, ésta carece de todo valor. Por eso, poder brindarles a las personas información sobre lo que la ciencia produce, les abre la posibilidad de poder decidir de otra manera; es decir, adquieren más libertad, Y de ahí surgió esa frase que quedó para nosotros: «Más ciencia es más libertad»”, concluye Ballarini.

Fuente
elciudadanoweb.com

domingo, 7 de agosto de 2016

200 años de Ciencia en la Argentina

En el marco de las múltiples actividades que se realizaron con motivo del Bicentenario de la Revolución de Mayo, la Academia Nacional de Ciencias propuso y concretó un ciclo de conferencias para debatir sobre la existencia de una Ciencia Nacional.




El devenir de la Ciencia en la Argentina, los puntos a favor y en contra de una ciencia nacional, su imagen en el mundo, pasado, presente y futuro, la apropiación por parte de la sociedad del conocimiento científico y la imagen que el ciudadano tiene sobre el mismo, son algunos de los aspectos que se trataron en las actividades realizadas.

Descargar conferencias aquí.

miércoles, 27 de julio de 2016

Busi - Pagani - Gomez Casati: avances en biocombustibles y biorremediación

Un grupo de investigadores trabaja en nuevas formas para producir biocombustibles al mismo tiempo que busca soluciones para eliminar contaminaciones del suelo. Su visión sobre ciencia básica y aplicada, y el impacto de la docencia en su trabajo de investigación. 

Busi, Gomez Casati y Pagani son bioquímicos egresados de la UNR. (Foto: C. Pairoba).


Por Claudio Pairoba

María Victoria Busi, María Ayelen Pagani y Diego Gomez Casati se desempeñan en el ámbito del Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI, UNR-CONICET). Trabajan en plantas, estudiando síntesis/degradación de hidratos de carbono, síntesis de grupos hierro-azufre (Fe-S, importantes para el normal funcionamiento de algunas enzimas) y detoxificación de suelos contaminados con metales pesados. Sus grupos de investigación se apoyan mutuamente para llevar adelante proyectos de investigación básica y aplicada. 

¿Cuáles son sus proyectos de investigación?
María Victoria Busi: Durante mi postdoc trabajé en metabolismo de almidón, estudiando una enzima específica. Como desprendimiento del postdoc surge mi tema de investigación actual. Es el estudio de unos módulos de unión a carbohidratos en enzimas de plantas con aplicaciones biotecnológicas. Esto no implica no hacer ciencia básica, lo que hacemos es clonarlos, purificarlos, estudiarlos, caracterizarlos para ver cuáles son sus funciones. Dependiendo de esto, ver alguna aplicación biotecnológica.

Trabajamos inicialmente en Arabidopsis thaliana (planta modelo), con una enzima particular que sintetiza almidón. Luego pasamos a otra enzima que degrada pared celular y después buscando distintas áreas de vacancia pasamos a trabajar en algas. Estudiamos el metabolismo de polisacáridos en plantas y algas. 

María Ayelen Pagani: mi formación de origen a nivel doctoral fue en un tipo muy particular de metaloproteina, las cuales están presentes en todos los organismos eucariotas. Profundicé en el metabolismo de algunos metales pesados o de transición en levaduras. Cuando vuelvo a la Argentina para ingresar a CONICET y como vine a trabajar al Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), trasladé mi interés por el metabolismo de metales en organismos hacia las plantas.

Originalmente estuve trabajando un poco con metales tóxicos en soja y girasol y ahora estamos profundizando en metales de interés como hierro en plantas modelo para después tal vez extrapolarlo a plantas de interés agronómico.

Las dos aplicaciones fundamentales de este estudio que es básico, son: 1. las cuestiones de salud alimentaria (metales nutrientes o tóxicos) y 2. aplicaciones en biorremediación. 

Diego Gomez Casati: la otra línea del laboratorio tiene que ver con Biología Molecular de plantas y Biotecnología. Estudiamos básicamente las consecuencias de la disfunción de una organela celular que es la mitocondria en plantas y qué consecuencias tiene esa disfunción sobre la expresión de genes a nivel nuclear.

La mitocondria está involucrada en una gran cantidad de procesos importantes en la célula, plantas en este caso, como en el desarrollo, la fotosíntesis, la germinación y la fecundación. Empezamos hae unos años con un estudio más bien básico que fue caracterizar la síntesis de moléculas inorgánicas (grupos hierro-azufre). Son importantes porque forman parte de numerosas moléculas, no solo dentro de la mitocondria, si no en el cloroplasto. Están en citoplasma también. Estas proteínas son las responsables de muchos procesos celulares como los que comenté recién.

El manejo de las funciones mitocondriales tiene aplicaciones en biotecnología de plantas como por ejemplo el hecho de lograr variedades macho estériles para en un futuro poder utilizarlo como estrategia para producir híbridos que son importantes a nivel comercial. 




Los tres son Bioquímicos egresados de la Universidad Nacional de Rosario. ¿Ven un corrimiento por lo cual hay cada vez menos bioquímicos haciendo investigación y cada vez más biotecnólogos? ¿Y por qué sería? 
MVB: Porque la biotecnología está de moda. Y porque con esa carrera uno puede hacer un millón de cosas maravillosas. Y con Bioquímica las opciones están más acotadas. Cuando nosotros éramos estudiantes (nos recibimos a mediados de los 90) se decía que no había mucho trabajo de bioquímico. Hoy lo que tenemos entendido es que cualquier bioquímico que sale tiene trabajo y bastante bien remunerado. Hay más biotecnólogos que no encuentran lugar. Me parece que para los biotecnólogos hay menos salida que para los bioquímicos. Si no hacen una carrera académica no hay mucha empresa de base tecnológica en la Argentina. 

¿Su trabajo está relacionado con el tema de biocombustibles?
MVB: Nosotros encontramos es una enzima de síntesis del almidón conectada con estos módulos de unión a carbohidratos que eran típicos de proteínas que degradan no que sintetizan. Empezamos a buscar qué se podía hacer con estos módulos o en que industria estaban aplicados. Todo lo que sea biocombustibles de primera generación se basa en la fermentación del almidón. Como trabajábamos en enzimas de almidón consideramos importante meternos en biocombustibles de segunda generación. Esto implica la degradación de la biomasa que no compite con el alimento. La pared celular vegetal está compuesta por celulosa, la cual también es una concatenación de unidades de glucosa (hidrato de carbono). Las enzimas que degradan celulosa también tienen módulos de unión a carbohidratos.

Para biocombustibles intentamos dividirnos en dos enfoques separados: uno es generar plantas transgénicas que tengan paredes celulares modificadas para que ese pre tratamiento, que es lo más costoso tanto ambiental como energéticamente para producir biocombustibles de segunda, sea más económico. Por otro lado desarrollar enzimas recombinantes de producción nacional y de desarrollo propio, para combustibles de primera y de segunda.

Después, biocombustibles de tercera generación implicaría trabajar con organismos genéticamente modificados y ahí se incorporan las algas. Buscamos generar algas transgénicas para producir mayores niveles de almidón que pueden ser extraídos más fácilmente con la ventaja de que ocupan menos espacio. El alga se puede filtrar y es más económica. 

¿Cómo es el estado actual del tema biocombustibles?
MVB: Una situación es Argentina y otra el resto del mundo. En el resto del mundo se le da mucha importancia y hay mucha inversión. Vino Susan Jenkins de Berkeley, donde tienen un instituto financiado por la British Petroleum que le aporta un montón de dinero para desarrollos propios de la BP y otros para actividades académicas.

Brasil, uno de los productores mundiales en bioetanol de primera, está incursionando en bioetanol de segunda con el blue starch, donde está gente de Petrobrás con capitales privados y también extranjeros.

Europa tiene por lo menos tres plantas de biocombustibles de segunda. En la Argentina hay un desarrollo total de biodiésel por el boom de la soja y últimamente el desarrollo de una planta muy importante en la zona de Villa María de productores de maíz para hacer bioetanol de primera porque se encontraron con un excedente de toneladas de ese cereal. Hay por lo menos un par de empresas locales que están en la producción de enzimas. El país suscribe y cada año saca la ley para que los cortes en nafta y gasoil incluyan un cierto porcentaje lo cual se va haciendo. La Cámara Argentina de Biocombustibles tiene una presencia muy fuerte en las decisiones.

De acuerdo a la literatura una de las complicaciones de la producción de biodiésel es el gran volumen de glicerina que se va generando sin encontrarle económicamente salida. La contaminación por glicerina es una contra al evaluar la calidad del biodiésel. 

DGC: En su momento, cuando las retenciones a la soja estaban muy altas, convenía más vender el aceite y no hacer el biocombustible y venderlo como tal. En muchos países se les da importancia pero se los apoya desde un aspecto que acá es variable. 

ES: ¿Hay financiamiento por parte de Yacimientos Petroliferos Fiscales?
MVB: Somos integrantes de un proyecto entre CONICET e Y-TEC (YPF Tecnología): que ganó el Dr. Alberto Iglesias en Santa Fe. Ese proyecto es específicamente para proteger los derrames de pozos de petróleo o decontaminar pozos de petróleo (biorrefinería). Ahí entramos con lo que serían algas genéticamente modificadas para poder limitar algún derrame o contaminación. La parte de Santa Fe (Iglesias y el Ing. Raul Comelli) se encargaría de producir, a partir de aceites, una sustancia muy similar a un derivado del petróleo que se está usando y sirve para embolsar el pozo y proteger del derrame.  

¿Tienen un proyecto en biorremediación?
MAP: La historia es así: para extraer petróleo hay que hacer perforaciones, las cuales no siempre son exitosas. De hecho las perforaciones que acaban siendo pozos productores es una de 15 o 20. Para hacer la perforación hace falta introducir el fluido de perforación, el cual es una emulsión oleosa altamente contaminante. El que se usa actualmente es un derivado del petróleo.

Son recalcitrantes, permanecen en el terreno y es muy difícil que se degraden. Son arrastrados por las corrientes de agua o permanecen contaminando el suelo. No solo eso, esta emulsión también tiene un componente acuoso que solubiliza los materiales de las rocasdonde estás perforando. Entre esos materiales hay metales pesados, los cuales están más biodisponibles en ese terreno y también son arrastrados por las corrientes de agua que atraviesan esa zona. Entonces hay dos tipos de contaminación: con hidrocarburos y con metales pesados.

Este proyecto trata de solucionar los dos aspectos. En Santa Fe, están trabajando para encontrar un reemplazo para el elemento oleoso del fluido de perforación con un compuesto menos recalcitrante a partir de aceites de soja. Nosotros vamos a tomar más la parte de generar algas genéticamente modificadas para tratar de absorber, recuperar o que estén menos biodisponibles estos metales que se han solubilizado por el proceso, usando distintas estrategias biotecnológicas. 

Microalgas como organismos decontaminantes
MAP: Después tenemos otro proyecto un poco más ambicioso, para el cual obtuvimos financiación del CONICET hace poco. En este caso nos proponemos aprovechar por un lado organismos que ya existen, que se han adaptado naturalmente a este tipo de contaminación con metales pesados. Un ejemplo bastante llamativo es una microalga que no es autóctona del sur de la Patagonia, pero que la ha colonizado y que crece en algunos lugares donde se sabe que hay contaminación con metales pesados (Golfo de San Julián y San Jorge, donde hay vertidos de mineras). La idea es recuperar las algas, crecerlas y ver si han mejorado naturalmente sus capacidades de absorber metales pesados.

Por otro lado modificaríamos microalgas, siempre de forma biotecnológica y apoyándonos en nuestras áreas de experiencia. Se sabe que las paredes de las algas son naturalmente absorbedoras de metales, entonces aplicando el área de Victoria donde modifican paredes celulares, intentaríamos aumentar esa pared que fija metales.

Por el lado de la línea de investigación de Diego, en la mitocondria, quisiéramos mejorar la resistencia de esos organismos para que puedan crecer en un medio con alta cantidad de metales y absorberlos.

Y las proteínas que yo he estudiado toda la vida, naturalmente están diseñadas para absorber metales. Entonces si aumentamos su cantidad en los organismos, sabemos que el mismo va a poder hacer frente a los metales, crecer y acumularlos.

Una de las cuestiones en las cuales se podrían aplicar estos desarrollos, es en el tema de generar biomasa que pueda absorber arsénico. El hidroarsenicismo crónico es uno de los grandes problemas de la Argentina, sobre todo en comunidades aisladas que se autoabastecen de napas que están contaminadas. La idea a futuro es intentar generar algún material bioabsorbente que pueda fijar arsénico o algún otro metal, pero con énfasis en el primero.

El acuífero guaraní es el que está contaminado con arsénico. Esto viene de épocas geológicas con materiales que cubrieron la tierra y buena parte de la Argentina, desde el noroeste, en diagonal cruzando el país, hasta nuestra zona. Todas las segundas napas están contaminadas. 

¿Qué avances hay en tu tema, Diego?
Una de las cosas en que estamos avanzando es en la caracterización de la función de genes y las proteínas que ellos codifican. La mayoría de estos genes son nucleares pero tienen target hacia la mitocondria. Muchos de estos genes están involucrados en la biogénesis de los grupos inorgánicos hierro-azufre (Fe-S) que no están solos en la célula si no unidos a proteínas y formando complejos porque si no son tóxicos.

Nosotros estamos avanzando en la caracterización de estos genes que hacen los grupos Fe-S y que además luego los incorporan a proteínas. Por ejemplo, tenemos plantas que a pesar de estar creciendo en alta cantidad de hierro, creen que están creciendo en deficiencia, por lo cual siguen tomando hierro. También vimos que otras variedades de plantas, con alguna modificación de algunos de estos genes, son capaces de crecer en suelos que son deficientes en hierro y en algunos otros metales. Esto es un problema en los suelos en general y en la Argentina en particular. Entonces se abre quizás otra puerta de aplicación de la caracterización básica que estamos haciendo.

Se relaciona con el tema de metales que es el tema de experiencia de Ayelén y, como hay algunas alteraciones del metabolismo de carbohidratos, también se conecta con la experiencia de Victoria. 

¿Cuál es su visión sobre la dicotomía entre ciencia básica y aplicada?
MVB: Para mí siempre es importante el “para qué”. Es importantísimo desarrollar conocimientos, pero hay circunstancias. Estos módulos de unión a carbohidratos se unen a determinadas estructuras: ¿para qué? ¿Podemos lograr un almidón diferente? Ciencia básica tiene que haber en un contexto. Y por aplicada entiéndase una muy buena aplicación de la básica, no algo más liviano. 

MAP: Da la sensación de que se pretende que uno trabaje por objetivos, casi como en una empresa. Y eso no se puede hacer en ciencia porque se terminan generando aplicaciones donde hay poco desarrollo, y es muy poco lo que se aporta de conocimiento o de capital intelectual. Generalmente esto lo dicen todos los países donde se hace buena ciencia, las mejores aplicaciones han surgido de alguna investigación básica. 

DGC: Coincido con lo que dice Victoria. Muchas veces lo veo haciendo un paralelismo con el deporte. ¿Vos querés llegar a tener una medalla olímpica? Tenés que entrenar cuatro años. No podés salir de tu casa e ir a ganar una medalla. Para lograr eso tenés que tener un montón de trabajo que yo lo veo como la parte básica. Tenés que hacer mucho trabajo para tener algo aplicado. Es imposible levantarte un día y decir voy a tener algo aplicado. Uno no descubre algo todos los días. 

MVB: Creo que podemos afirmar que ambas deben coexistir pero entendiendo como aplicada esa instancia superadora que tomando distintas cosas de los básicos existentes pueden arrancar desde otro punto. 

DGC: Hay una anécdota sobre Leloir, contada por Ranwell Caputo, quien recuerda que en aquellos años Leloir estaba preocupado porque lo que estaba haciendo no aportaba nada al desarrollo del país. Como por ejemplo podía ser en ese momento, un método para lograr un mejor método para las conservas en lata. Con el tiempo se vio que la escuela que hizo Leloir fue mucho más importante que la conserva en lata. Hacer escuela implica formar gente, capacitarla y tener los mejores científicos. Recordemos que Milstein ganó un premio Nobel y fue discípulo de Stopani quien a su vez fue discípulo de Leloir. 

A título personal
María Victoria Busi
Bioquímica – Universidad Nacional de Rosario
Doctora en Biología Molecular y Biotecnología - Universidad Nacional de San Martín
Investigadora Independiente del CONICET
CEFOBI (UNR-CONICET)
Facultad de Cs. Bioquímicas y Farmacéuticas
Profesora Adjunta Universidad Nacional de San Martín
Carrera: Licenciatura en Biotecnología y Doctorado Biología Molecular y Biotecnología
Área Biotecnología Vegetal 

María Ayelen Pagani
Bioquímica – Universidad Nacional de Rosario
Doctora en Genética - Universidad de Barcelona
Investigadora Adjunta CONICET
CEFOBI (UNR-CONICET) 

Diego Gomez Casati
Bioquímico - Universidad Nacional de Rosario
Doctor en Bioquímica - Universidad de Buenos Aires
Investigador Principal CONICET
Profesor Adjunto - Facultad de Cs. Bioquímicas y Farmacéuticas
Universidad Nacional de Rosario
Profesor Adjunto - Área Biotecnología Vegetal
Universidad Nacional de San Martin
Secretario de Posgrado – Facultad de Cs. Bioquímicas y Farmacéuticas

sábado, 9 de julio de 2016

GEII: interdisciplina, múltiples proyectos y actividades de extensión

El Grupo de Experimentación Innovativa e Instrumental lleva adelante múltiples proyectos interdisciplinarios. La interesante visión de la docencia.

Antiba, Borrero, Carbone y Caparrós durante la entrevista (Foto: C. Pairoba).




El Grupo de Experimentación Innovativa e Instrumental (GEII) depende de la Secretaría de Ciencia y Tecnología de la Facultad de Cs. Exactas, Ingeniería y Agrimensura (FCEIA).

Con una larga trayectoria en distintos temas, que abarcan desde la medicina a la informática, pasando por las energías renovables, sus integrantes llevan adelante su trabajo con gran esfuerzo y en condiciones complicadas.

En el GEII, Cristian Antiba está al frente de un grupo de estudiantes de distintas carreras de la FCEIA, quienes con dedicación absoluta concretan proyectos al mismo tiempo que aprenden y se nutren en un espacio interdisciplinario. Sus proyectos involucran también a otras facultades y llegan a formar interacciones fructíferas con estudiantes secundarios.

El GEII trabaja con distintas cátedras de la FCEIA en base a un enfoque específico de la docencia.
Cristian Antiba: Además de lo que aparece en el texto sobre el trabajo en el grupo (ver archivo adjunto “Educación, experimental innovativa”), trabajamos con cátedras regulares. Ya hicimos dispositivos para Física Experimental de la licenciatura, donde se construyó un estroboscopio. Después se trabajó con Electromagnetismo de cuarto año, para las clases del Dr. Riera donde se construyó un equipo que todo el mundo había visto en el pizarrón pero no en la práctica.

Interaccionamos con Estructural con el Ing. Rubinstein. Hasta que se jubiló el contacto fue permanente año tras año . Se construyeron equipos y se dieron clases prácticas. También para Hidráulica (Recursos Hídricos III), donde hacen un trabajo práctico con nosotros.

Todo eso a la facultad no le costó nada, ni siquiera cargos docentes. Se hizo todo ad-honorem. Tampoco los recursos, ya que todo el desarrollo que se hizo está autofinanciado por el GEII.

¿Cómo es la ubicación del GEII en la estructura de la facultad?
CA: Pertenece a la Secretaría de C y T, nuestra directora es la Dra. Sonia Concari. Los dos cargos docentes simples del GEII los tengo yo. El decano nombró al Dr. Reinaldo Berti como director del grupo. En la comisión también están el Ing. Oscar Sadosky de Brasil (el primer director del reactor nuclear de la FCEIA) y el Prof. Guido Macky quienes son nuestros consultores. También el primer director de este grupo, que fue Danilo Gomez. Este grupo nació como el Grupo Caos y después gracias a la Dra. Ing. Nora Pouey se convirtió en el Grupo de Experimentación Innovativa e Instrumental.

¿Cuando nace el GEII?
CA: En el 2000, cuando ingresa Danilo Gomez, quien fue el primer director del grupo. Yo estaba desde el año 88 y me formé en Física. El Dr. Lewis me contacta con Gomez y allí arranca todo.

¿Quiénes son los alumnos adscriptos que te acompañan?
Paula Borrero: estoy en cuarto año de la Licenciatura en Cs. de la Computación, y formo parte del grupo desde hace un año y medio. Mi primer proyecto tuvo que ver con un proyecto en papanicolao.

Nicolás Caparrós: estoy haciendo tercer año de Ing. Mecánica. Ingresé al GEII este año. Ya lo conocía pero esperé a tener más conocimientos básicos de otras cosas. Ayudo en lo que falte en otros proyectos y me involucro en todos ellos. Mi hermano mayor, Sebastián Caparrós, es ingeniero industrial y participó de este grupo también.

Nicolás Carbone: curso el primer año de Ingeniería Electrónica y pertenezco al GEII desde hace más de un año. Participé en el armado del sonómetro que se puede ver en el Centro Cultural Roberto Fontanarrosa. Este equipo se armó originalmente para la semana del sonido.

¿Cómo es el tema del sonómetro?
CA: El Ing. Federico Miyara le encarga el GEII la construcción de este dispositivo. Si no fuera por los adscriptos, sobre todo Nicolás Carbone, el proyecto no hubiera sido posible. En cada proyecto son los adscriptos los que lo llevan adelante y ellos son el grupo. Pueden incorporarse alumnos de primero a quinto año sin problemas. Dentro del proyecto del papanicolao robótico tenemos a dos médicos: Giulia Márquez y Nicolás Sauro. También al Ing. Valderrey, todo dentro de un proyecto de vinculación. Todos trabajan de manera gratuita y porque lo quieren hacer. Como dijo la Dra. Pouey, hay que recordar la interdisciplinariedad del grupo. También hemos trabajado con gente de Biotecnología en un proyecto que lamentablemente no se concretó. Hace unos 4-5 años atrás se trabajó en plásticos degradables. Presentamos soluciones que ahora tienen vigencia por lo de las bolsas de supermercados. Nosotros propusimos hacer bolsas de nylon biodegradables con el excremento humano en las aguas servidas. Con esas bacterias obteníamos el plástico para las bolsas pero no logramos financiación.

El enfoque de la docencia
Además del intenso trabajo experimental, el GEII lleva adelante una idea del trabajo docente que puede leerse en el archivo adjunto (Educación Experimental Innovativa). El mismo se presentó como póster en las Segundas Jornadas de Innovación en Educación, con la autoria de C Antiba, D. Gomez y N. Pouey.

En base al cambio propuesto en el texto sobre educación, ¿cómo es el estado de ese cambio y cuál ha sido su recepción?
CA: Hasta hace unos años se hacía como aparece en el texto. Yo me basaba en la pizarra y discutíamos sobre distintos temas, había que ir a clases primero. Actualmente estamos tratando de hacerlo a medida que se van haciendo los proyectos. Dejamos que el estudiante se maneje solo y si se equivoca, que se equivoque. Al cuerpo docente de la facultad le encanta pero no tenemos el apoyo de cargos, lo cual es desesperante.

¿Cuánta gente conforma el grupo?
CA:
La composición cambia año tras año. El año pasado teníamos muchos chicos de Ingeniería Electrónica, este año los adscriptos que tenemos son los aquí presentes más Andres Miyara, Lucas Liendo y Nicolás Montenegro. También tenemos graduados como los que te nombré. Además la Física Ana Pioto y al Dr. Volmaro consultando por motores, lo que son actividades de colaboración normal.

A nivel terciario también colaboramos con la gente del profesorado del Normal 1.

¿Tienen proyectos con escuelas secundarias?
CA:
Con los chicos del secundario tenemos dos proyectos financiados por la Secretaría de Extension de la FCEIA. El proyecto de ritmo cardíaco y el de bomba de agua resonante a calor solar.

Ahora también estamos trabajando en el tema de crecimiento de cristales. Fui a hacer una capacitación a la Facultad de Cs. Bioquímicas y Farmacéuticas en este tema. Este año vamos a participar a nivel nacional con la escuela San Francisquito del tema crecimiento de cristales, dentro del Programa Voc.Ar del CONICET.

¿Sobre qué cuestiones te parece que hay que trabajar?
CA:
Un problema de la universidad es que genera un filtro: igualdad y semejanza al docente. El que no es así recibe un rechazo tan intenso que hay estudiantes que no se lo bancan. Hay alumnos de alto rendimiento que no pueden soportar las penurias que tendrían que pasar para acceder al año siguiente. En la secundaria muchos chicos van obligados pero en la universidad se supone que los chicos van porque les gusta. Tendrían que ir a ser felices, a disfrutar y en una gran parte de los casos van a sufrir al docente. Un docente bueno te enseña cualquier cosa y el estudiante aprende lo que sea. Es todo un círculo vicioso donde se van cansando, los más brillantes se van atrasando y mucho terminan desertando.

¿Por qué ingresaron al GEII?
Paula Borrero:
A mí me invitó otro adscripto. Desde el principio me gustó poder trabajar en proyectos reales con gente de otras carreras porque cada uno aporta su visión al proyecto y a la vez aprendés cosas que en la facultad no aprendés porque son otras áreas. Hasta ahora me gustó meterme en todos los proyectos un poco y la forma de trabajar. En el proyecto de la escuela secundaria otro de los adscriptos, Andres Miyara, hizo una parte del trabajo y después nos complementamos. Yo hice un programa que te dejaba ver la parte electrónica en computadoras. Él hizo la parte electrónica y yo hice la visualización.

CA: Se trabajó así porque era imposible comprar las pantallas táctiles y se truncaba el proyecto. Entonces por la genialidad de Paula, la noche anterior solucionaron la parte de graficación. Estábamos en el horno.

¿Sobre qué es el proyecto de la escuela secundaria?
CA:
Un analizador y visualizador de ritmo cardíaco. Es para que los dispensarios de la Argentina tengan a muy bajo costo un dispositivo para una alerta temprana ante alguien que va con una arritmia o ritmo acelerado y puedan derivarlo o no a un centro de máxima complejidad. Este dispositivo que es carísimo lo hacen nuestros adscriptos por muy bajo precio. Esto se les enseña a los chicos de la secundaria, cuestiones de programación y otras cosas. Esto se hizo en la escuela San Francisquito.

PB: Otra cosa importante es que a los profesores de la secundaria se les generó el incentivo para enseñar otras cosas y nos preguntaban cómo hacer para innovar. Qué libros de Física usar, cómo mejorar. También trabajamos con estudiantes de medicina, ya recibidos. Me gustó poder conocer gente de la Facultad de Cs. Médicas, interactuar con ellos me incentivó a conocer más.

CA: Hay otro proyecto en la parte de salud. Son veinte muestras de papanicolao a la vez las cuales se ejecutan robóticamente. El equipo permite hacer el diagnóstico por imágenes, con dos tipos de aumento las cuales se envían por celular. Competimos en TecnoTour el año pasado y fuimos una de las 28 universidades que ganaron.

¿Cómo entraron al grupo?
Nicolás Carbone:
Entre por casualidad. Al principio del 2015 me acerqué a una chica y me comentó sobre el GEII. Asistí a la reunión, me presentaron a otros integrantes y colaboré con el proyecto del sonómetro. Me he quedado noches enteras armando circuitos, diseñando partes de las etapas de potencia que tiene ese instrumento. Todo por una vocación que tengo, me encanta experimentar y armar cosas. En casa tengo un taller propio y de chico estoy metido con cosas de la electrónica. También pude colaborar porque tengo algunos conocimientos técnicos, me recibí como técnico electrónico.

Fui a Buenos Aires con el proyecto de la EcoVan, que ganó acá en Rosario dentro del TecnoTour Estuvimos en las oficinas de Microsoft. Había competidores de varias provincias y llegamos a esa instancia.

Nicolás Caparrós: Yo conocía al grupo por mi hermano, quien también entró en tercer año de su carrera. Le preguntó a un profesor dónde podía hacer algo manual y lo derivaron al GEII. Empecé la facultad sabiendo que en algún momento quería venir. Decidí cerrar primero el ciclo básico para tener los conocimientos teóricos necesarios y este año decidí ingresar. Empecé a intentar hacer cosas en casa. Sentía que quedás limitado a lo que te quiere enseñar el profesor. No solo aprendo de otras áreas cosas nuevas que me enseñan los compañeros, si no cosas de mi misma carrera que aún no ví.

¿Tienen actividades extracurriculares?
PB:
Antes tenía muchas actividades. Por ejemplo estudié inglés desde chica. También soy scout y me gusta la parte de voluntariado, colaborar con la gente. Tomé cursos de base de datos y en Colón (Entre Ríos) hacía escuela de doble turno. Mis padres tienen un periódico y siempre había algo que hacer. Aprendí a revelar por ejemplo.

N. Carbone: Me recibí en la ex Escuela Téçnica Nº2 (Tucumán y Pueyrredon). Ahí estaba todo el día, doble escolaridad, pero en mis ratos libres siempre me he quedado armando circuitos. Me gusta mucho la parte de audio, la electroacústica y la electrónica orientada a amplificadores de potencia, convertidores de corriente continua alterna. Con mis ahorros he comprado algunos instrumentos que tengo en un taller. Me gusta experimentar en mis ratos libres, es mi distracción, es como un hobby y también aprendo cosas. Experimento en distintas áreas siempre aplicando la electrónica.

En tercero de la secundaria hice un curso de programación en microcontroladores PIC en el Politécnico. Después no mucho más por una cuestión de tiempo. Entraba 7 de la mañana y salía 7 de la tarde. Me dedico básicamente a la facultad.

N. Caparrós: Yo iba a un colegio humanístico doble turno. Me quedaba poco tiempo y lo dedicaba a la música y a hacer deporte. Hoy me queda menos tiempo. A veces trabajo en algún proyecto de electrónica, simple. Cuando tengo tiempo música, y hago deportes todas las semanas. Toco el bajo y la guitarra. Soy de Venado Tuerto.

CA: Durante la primaria estudié piano y cuando terminé séptimo grado me recibí de profesor de piano.

Mi tesis de maestría es sobre cómo acceden al conocimiento los estudiantes con alto rendimiento académico. Y tiene que ver con lo que hicieron de chiquitos y como lograron llegar a la universidad en lo que les gustaba. Y hay mucha tarea en paralelo.

Proyectos en los que están trabajando
Algunos de los proyectos generados desde el GEII incluyen:

1. Bomba de agua resonante
2. Sonómetro libre gigante
3. Dron zeppelín
4. Visualizador de ritmo cardíaco de muy bajo costo
5. Vehículo ecológico multihíbrido multiregenerativo
6. Papanicolao robotizado a distancia

El listado también puede verse aquí.

sábado, 18 de junio de 2016

El GEII instaló un sonómetro digital

Federico Miyara, uno de los integrantes del Grupo de Experimentación Innovativa e Instrumental, comenta el logro.
 
El sonómetro está instalado en el CC Fontanarrosa (Foto: GEII).



Consultado por ESPACIO SeCyT, el Ing. Miyara, miembro del Consejo Asesor del Grupo de Experimentación Innovativa e Instrumental (GEII), destacó la labor del grupo para concretar un proyecto de larga data. El GEII depende de la Secretaría de Ciencia y Tecnología de la Facultad de Cs. Exactas, Ingeniería y Agrimensura (Universidad Nacional de Rosario) y sus integrantes desempeñan sus tareas en la citada unidad académica.

“Mi agradecimiento público a Cristián Antiba que desde el GEII dirigió el grupo de adscriptos que hicieron realidad un sueño de muchos años, el disponer en un espacio público de Rosario de un sonómetro digital gigante, de manera que los rosarinos podrán "pasar de la teoría a la práctica" y relacionar esa palabrita tan vapuleada como mal entendida, "decibel", con lo que se percibe auditivamente” destacó el docente-investigador de la Facultad de Cs. Exactas, Ingeniería y Agrimensura.


¿Dónde está ubicado el sonómetro?
El sonómetro está instalado en la fachada del Centro Cultural "Roberto Fontanarrosa" (CCRF). Hasta donde sabemos, es el primero en el país, con excepción del que hay en el MALBA de Buenos Aires, que más que un sonómetro es un vúmetro, ya que sólo marca con una barra de luces, sin ninguna cifra. El que se instaló en el CCRF tiene un indicador numérico legible desde 80 m y sus dígitos cambian de color según el grado de riesgo que implica cada nivel. Los niveles inocuos se muestran en verde, los de precaución en amarillo y los que a largo plazo provocan daño auditivo, en rojo.

¿Quiénes más participaron del proyecto?
Debo agradecer a Reinaldo Welti, quien dirige el GEII, a Nora Pouey, que fue siempre fuerza inspiradora y de contención ante las dificultades, a Rafael Ielpi, director del Centro Cultural, que acogió la idea de instalarlo allí, a Graciela Miraglia, también del CCRF, a Daniela Mastrangelo y Bibiana Navarro de la Municipalidad y, por supuesto a los adscriptos (alumnos de Ingeniería Electrónica) que intervinieron en diferentes etapas del proyecto: Darío De Caneva, Nicolás Carbone, Juan Ignacio Cornet, Juan Pablo Curuchet, Franco Di Rosa, Luca Liendo, Andrés Pedro Miyara, Agustín Oyola, Emanuel San Martín.  Antes de su instalación definitiva se pudo apreciar en el hall de Pellegrini, luego en el estacionamiento del polo científico del Centro Universitario Rosario, donde se encuentra el GEII, y en el hall del CCRF durante la realización de la Semana del Sonido.

¿Fuentes de financiamiento para concretar el proyecto?
Esto es difícil de responder con la respuesta convencional que se esperaría. Se usó dinero de subsidios de proyectos de investigación PID, de esos que llegan 2 años después de ejecutado el proyecto. Me refiero a proyectos que si bien están vinculados porque tienen que ver con cuestiones acústicas (por estar involucrados grupos que se dedican a la acústica y el ruido), en realidad se trata de otros proyectos diferentes.  También hubo algunas donaciones y dinero propio de integrantes del equipo. En algunos casos es dinero ahorrado, por ejemplo a algunas actividades de investigación de campo se les asignan viáticos que en su momento los investigadores donaron a un fondo común para afrontar situaciones como ésta, en las que la oportunidad no da para esperar una convocatoria en la cual encuadre lo que uno quiere lograr. Después estuvo el trabajo ad honorem de los adscriptos, que si bien es el subproducto de una actividad extracurricular de aprendizaje, no deja de ser un aporte en fuerza laboral.

¿Hasta cuándo estará instalado en el CCRF?
En forma permanente. La idea es que quede allí. Se eligió la ubicación por ser un lugar muy concurrido y donde se dan además multitud de eventos culturales, sociales, cívicas y políticas, con diversidad de paisajes sonoros. El otro día, por ejemplo, en la marcha "Ni una menos" se estrenó en una manifestación popular muy sentida, donde por la gran aglomeración de personas presentes en la convocatoria se pudo apreciar que los niveles eran entre 10 y 15 decibeles superiores a los de un día cualquiera, y cuando en dos o tres oportunidades sonaron bombas de estruendo, la marca trepó momentáneamente por encima de los 90 dBA

Está la idea de diseñar e implementar otras versiones más pequeñas para ubicar en lugares interiores con acceso de público (Facultades, distritos de la Municipalidad, estaciones) e inclusive el GEII presentó un proyecto Innovar para darle continuidad al proyecto.

lunes, 25 de abril de 2016

Bacterias que atacan cítricos


Ivana Kraiselburd, docente-investigadora de la UNR nos cuenta su trabajo y experiencias durante el cursado del doctorado. Por qué estudió Biotecnología, la importancia de la docencia y cuestiones a tener en cuenta al momento de cursar la carrera.






Ivana Kraiselburd es una reciente doctorada y docente  de la Facultad de Ciencias Bioquímicas y Farmacéuticas (Universidad Nacional de Rosario, UNR) quien desarrolló su trabajo de investigación en el Instituto de Biología Molecular y Celular de Rosario (UNR-CONICET).

Su tesis doctoral “Efecto de la luz sobre las interacciones entre Xanthomonas citri subsp. citri y plantas hospedadoras” dirigida por la Dra. Elena Orellano, recibió el premio año 2014 dentro del Programa de Promoción de las Actividades Científico-Tecnológicas y de Innovación de la Provincia en al área Agropecuaria, entregado por el Ministerio de Ciencia, Tecnología e Innovación de la provincia de Santa Fe.



Durante la entrevista (ver video) Ivana habla sobre la bacteria Xanthomonas citrii como patógeno de cítricos, las consecuencias económicas de la enfermedad, sus descubrimientos durante el trabajo experimental para obtener su doctorado, su vocación por la Biotecnología y la importancia de la docencia en su desarrollo científico.

A título personal
Ivana Kraiselburd
Licenciada en Biotecnología
Doctora en Ciencias Biológicas por la Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario.
Docente de la asignatura Biología Molecular de la Licenciatura en Biotecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario.

jueves, 7 de abril de 2016

Sobre las actividades de investigación en la UNR

Fuí invitado al programa "En acción", con el fin de comentar las actividades de investigación de la Universidad Nacional de Rosario como representante de la Secretaría de Ciencia y Tecnología.

Claudio Pairoba durante la entrevista con Flavia Padin.

Durante la entrevista describí las actividades de investigación que se desarrollan en nuestra universidad, tomando como ejemplo a la Jornada de Ciencia y Tecnología que se organiza anualmente.

También conté cómo los alumnos se inician en las actividades científicas y la consecuente dinámica de formación y crecimiento de los grupos de investigación.

La entrevista puede verse aquí.

miércoles, 16 de marzo de 2016

Wolfgang Gartner: fotorreceptores y ciencia en Alemania

De visita en nuestra ciudad, el investigador alemán nos habla de su trabajo y las colaboraciones con nuestro país entre otros temas. 



 
Wolfgang Gartner es líder del Grupo de Investigación en Fotorreceptores, dentro del Instituto Max Planck para la Conversión de Energía Química. Durante el mes de noviembre estuvo visitando centros de investigación en nuestra ciudad y dió un seminario en la Facultad de Cs. Bioquímicas y Farmacéuticas.
 
¿Cómo se interesó en la ciencia?
Lo mío no es como las historias de chicos que se entusiasman con algo y después hay una explosión. Yo no hice explotar nada en el garage. Me decidí por la Química porque había algo fascinante y pasé por todos los cursos de esa asignatura hasta obtener mi diploma (NR: Es el equivalente a un título de grado más una maestría).
 
En un momento me di cuenta de que algunas de estas moléculas que estaba estudiando tenían impacto biológico y entonces quise ver cómo funcionaban. Mi primer postdoc lo hice en Suiza y como químico me incorporé a un biolaboratorio donde me entrenaron para clonar. Posteriormente pude manejar proteínas, esto fue muy temprano alrededor del ´84-´85. Seguidamente me interesó la idea de combinar Química y Biología así que por mi entrenamiento químico podía producir más moléculas de manera sintética. En estas condiciones si las moléculas que yo hacía podían combinarse con una enzima (proteína) yo podía modificarla por mutagénesis y ver la interacción entre molécula y enzima. Esto nos permitía tener más información ya que se hacía muy poca cristalización y el clonado estaba en sus etapas iniciales. Así que uno podía hacer estudios espectroscópicos para estudiar los cambios introducidos ya sea en el ligando (molécula sintetizada) o en la enzima.
 
Cuando comencé el doctorado me interesé en todo lo que fuera “foto” (temas relacionados con la luz) dado que eso agrega un aspecto muy interesante porque la mayoría de los fotorreceptores son muy rápidos. Uno trata de evitar la fluorescencia ya que esta es una pérdida para los fotorreceptores. También se necesitan especialistas que manejen la espectroscopia rápida que se necesita para estudiar este fenómeno. Yo seguía el trabajo que estos especialistas hacían y así terminé haciendo un trabajo multidisciplinario. Mayormente somos los productores y hacemos análisis preliminares, luego vamos con los especialistas para los detalles. En los tiempos que corren todo es multidisciplinario, no hay otra opción.
 
¿Cómo se interesó en fotorreceptores?
Inicialmente solo estaba interesado en el mecanismo visual pero en ese momento encontraron una bacteria con una función muy similar, con una proteína que absorbía luz. Me uní al grupo de ese investigador alemán, quien había hecho este descubrimiento durante su postdoctorado en los EE.UU. y luego había vuelto a Alemania. Desde ese momento trabajé siempre en fotorreceptores.
 
Cuando me uní al instituto en Müllheim estaban trabajando con los fotorreceptores de plantas llamados fitocromos. Inicialmente trabajé con el espectro visible y alrededor de10 años atrás incorporamos el estudio de receptores para luz azul. Poco después nos unimos a un proyecto internacional y ahora estamos trabajando en los fitocromos para luz roja y los receptores para luz azul.
 
¿Cuáles son las aplicaciones de estos fotorreceptores?
Conocemos mucho de las funciones de los fotorreceptores. Por ejemplo, en plantas sabemos lo que hacen fotoquímicamente así que teníamos mucha confianza en que si los usamos sabemos cómo se comportarán. La idea vino de un colega en Alemania y un grupo en Stanford quienes encontraron un transportador de membrana, un canal que se abre y cierra en respuesta a la luz. Uno puede usar el gen de ese canal, ponerlo en un organismo y entonces lo podés regular por la luz.
 
Esto creó el nombre para este campo: optogénica ya que uno incorpora un gen y tiene un sistema regulado por luz. Esto fue una explosión en los últimos 5-6 años.
 
Ahora se está aplicando en pez cebra, ratas, conejillos de india. Incluso nuestra visión depende de una respuesta neuronal: tenemos la luz, luego la célula da una señal y el nervio óptico comienza a funcionar enviando la señal al cerebro.
 
¿Esto abre la posibilidad de aplicación en humanos?
Hay un cierto número de enfermedades hereditarias que dejan a los pacientes ciegos a los 25 años por degeneración celular. La idea es insertar estos canales de activación neuronal dentro del ojo para saltear las células deterioradas, luego aplicar luz a estos canales para que esta gente pueda ver un poco mejor. Esta sería una aplicación médica.
 
Si uno busca el nombre de este canal (canalrodopsina) en la Internet, uno encuentra películas donde se puede ver una rata ciega que ha sido transformada con este canal (proteína) y colocada en una pileta con 6 salidas una sola de las cuales está iluminada, y la rata la encuentra. O sea que se le ha devuelto la visión.
 
Estos experimentos han pasado por distintos organismos: bacterias, pez cebra, ratas y ahora se está probando en macacos y muy pronto se probará en humanos. El sistema está patentado por otro grupo y es una de las pocas patentes que está generando dinero en la actualidad.
 
¿Qué está haciendo su grupo con los fotorreceptores?
Una de las cosas que estamos haciendo en mi grupo es que muchos de estos receptores tienen dos partes: una responsable por la fotoquímica y la otra es responsable de generar la señal. Esta señal puede ser una actividad enzimática regulada por luz. Por ejemplo, la enzima podría generar GMPc, el cual es un mensajero secundario importante y participa en muchas cascadas regulatorias. Cuando pensamos en GMPc pensamos en tirosina quinasas las cuales son importantes en cáncer y se regulan por mecanismos de fosforilación, así que tiene muchas aplicaciones. Esto todavía está en sus inicios así que los investigadores están combinando cosas.
 
¿Hay aplicaciones para microscopía?
Sí. El año pasado hubo un premio Nobel relacionado con las aplicaciones en microscopía, Stefan Hell fue uno de los tres ganadores. Yo lo conocía desde antes ya que el está trabajando en microscopía de super-resolución. Hell encontró la manera de separar dos puntos con una distancia inferior a los 200 nm trabajando con fluorescencia, algo que no se había podido hacer. En nuestro caso incorporamos una proteína fluorescente la cual puede activarse o desactivarse. En base a experimentos preliminares, permite distinguir objetos separados por hasta 30 nm. A su vez estas proteínas son pequeñas así que se las puede usar para “etiquetar” otras proteínas de interés y detectarlas en tiempo y espacio. De esta manera uno puede saber dónde se produce la proteína o hacia donde se mueve.
 
Este es el escenario hacia el cual se mueve la microscopía fluorescente ya que uno quiere trabajar con una célula viva.
 
¿Ud. hace docencia?
Sí, pero es una actividad voluntaria. La gente del Max Planck no da clases si así no lo desea. Los directores se convierten en Profesores Honorarios lo cual significa que pueden presentar estudiantes para los exámenes. Yo obtuve mi habilitación la cual lleva entre 5 y 6 años e implica demostrar que uno puede trabajar en forma independiente, supervisar estudiantes, luego tenés que escribir una tesis sobre ese período de tiempo. Hay que publicar y conseguir dinero para proyectos y entonces se consigue el título. Luego podés trabajar como docente privado, supervisar estudiantes. A partir de esta instancia se puede solicitar un puesto como profesor en la universidad y eventualmente se te toma. Después se asciende hasta ser Profesor Adjunto de la universidad. El tiempo que hay que dedicarle es poco, yo doy un curso de dos semanas de tiempo completo dando clases teóricas y prácticas. Si mis colegas tienen un postulante para hacer un doctorado, puedo ser miembro del comité que decide sobre la aceptación. Y también puedo presentar mis propios estudiantes en vez de tener a una persona de la universidad en mi nombre.
 
O sea que se necesita de una carrera docente para poder respaldar la investigación.
Así es. De todas formas, como dije, en Max Planck es diferente ya que estamos dedicados solo a la investigación. Pero si un candidato del Max Planck se presenta para un puesto en la universidad lo primero que miran es si tiene experiencia docente, lo cual puede ser una desventaja para la gente del Max Planck.
 
¿Dónde está ubicado su laboratorio?
Estoy en Mülheim, en el noroeste industrial de Alemania. Toda esta área cubre una superficie de 10 por 60 km con una población de 8 millones de personas. Las ciudades están pegadas una a la otra pero Mülheim es un poco más tranquilo. Fue identificado como el lugar para uno de los Institutos Max Planck en 1910, cuando aún vivía el Emperador Guillermo. El instituto luego se dividió en dos, el original se dedica a la investigación en carbón el cual existe aquí desde hace 200 años. Hay muchas minas de carbón en esta área, pero esto ya no es competitivo. El carbón chino, incluso con el traslado, es más barato. Pero esta también era la zona donde se construyeron los grandes hornos para fundir acero que venía por el Rin. Este fue el primer instituto sobre carbón fuera de Berlín. Hay otro instituto que hace investigación en hierro y está en Dusseldorf. Estamos a unos 60 km al norte de Colonia.
 
¿Hay relación entre las universidades y la industria?
Si, incluso muy cercana. Por ejemplo, hay ingenieros que están muy cercanos a la investigación aplicada. Nosotros hacemos investigación básica, no estamos buscando un resultado aplicado. Si se obtiene algo, se origina una empresa fundada por uno de los directores que hizo el hallazgo. Esto ha ocurrido varias veces en Munich donde hay varios centros Max Planck. Así se crearon varias compañías para clonado y material de laboratorio.
 
¿Cuánto invierte el gobierno alemán en ciencia?
La Sociedad Alemana de Ciencia aporta fondos para proyectos en las universidades por 2.500 millones de euros. Los institutos Max Planck reciben la misma cantidad. Las universidades son solventadas por los estados, incluyendo el aporte para los salarios. El dinero que viene del gobierno central es solo para investigación. La Sociedad Humboldt recibe más dinero ya que es una entidad más grande al igual que la Sociedad Leibnitz.
 
Por otro lado, Europa está construyendo un reactor de prefusión en Francia y eso tiene fondos independientes que, calculo, rondan los 10.000 millones.
 
En el campo de la Astronomía, incluyendo viajes al telescopio en Chile, también se invierten fondos.
 
Luego hay un consorcio de institutos llamado Fraunhofer en honor de un científico, el cual está obligado a aportar la mitad de los fondos necesarios para proyectos de investigación. Este grupo está muy cercano a la industria. La otra mitad viene del gobierno central.
 
La gente del consorcio Frauhofer inventó el formato mp3 pero no lo patentaron. También inventaron el Dolby. Obtuvieron una cierta licencia pero no a nivel global.
 
Por otra parte está el proceso de magnetización del disco rígido, el cual ha tenido impacto social, obtuvo un premio Nobel y está patentado.
 
¿Algún otro punto que quisiera destacar?
Tengo una colaboración con China desde hace unos 6-8 años pero quiero destacar que en mis contactos con los países latinoamericanos he notado que el sistema argentino produce estudiantes que pueden incorporarse con facilidad a nuestro tipo de investigación. Están entrenados, como he comprobado con los 6 o 7 estudiantes que he incorporado en los últimos 5 años. Traje a algunos de mis estudiantes a Tucumán, con quienes tengo la colaboración de mayor duración. Los postdocs que vinieron a Alemania hace muchos años tampoco tuvieron ningún problema.
 
También veo que la Sociedad Max Planck está muy interesada en activar su colaboración con la Argentina. Tenemos entre 10 y 15 directores que son argentinos. Hay grupos asociados con los cuales hay un intenso flujo de material. Cuando el director se retira, el equipo de su laboratorio se pone en el mercado o bien lo puede traer a su país. Tenemos el caso de un investigador argentino que al retirarse puso todo su laboratorio en contenedores y lo trajo a Buenos Aires. Esto ha ocurrido en varias ocasiones. Desde el punto de vista de la ganancia científica, el resultado es muy bueno.
 
He venido a la Argentina durante los últimos 8 o 9 años una vez al año pero es mi primera vez en Rosario. Tengo colaboraciones con la Dra. Elena Orellano en Rosario, con Buenos Aires, Santiago del Estero y Tucumán. También estaré visitando Mendoza y Tucumán. En resumen es una muy buena experiencia.

miércoles, 9 de marzo de 2016

Diabetes: diagnóstico, calidad de vida y avances (Parte II)

Pablo Arias es vicepresidente del Capítulo Litoral (que abarca las provincias de Santa Fe y Entre Ríos) de la Sociedad Argentina de Diabetes (SAD). Docente-investigador de nuestra universidad, Arias nos actualiza sobre esta patología.


Lea aquí la primera parte de esta nota

¿Qué cuestiones podrían fortalecerse?
Creo que la parte más importante que hay que buscar es ahondar en las conductas que hacen que la población sea un tanto resistente a ciertos consejos. O sea, ¿por qué se sabe de la existencia de la diabetes y se la niega? O, sabiendo que se tiene una carga familiar, no se busca la constatación.

También hay que ahondar en algo que provee una respuesta a muchas de estas enfermedades crónicas y es de qué maneras hacer más efectivos los tratamientos, no desde el punto de vista de la calidad de las drogas si no desde el punto de vista del cumplimiento. Está claramente demostrado que de cada 100 pacientes, hay una tercera parte que no cumple el tratamiento. Si uno mira los perfiles relacionados con los resultados del tratamiento uno está buscando una meta terapéutica que está dada por un parámetro que se llama hemoglobina glicosilada (la fracción de hemoglobina que se carga de azúcar durante los tres meses previos a la extracción de sangre). O sea que te está informando del grado de control de los últimos tres meses.
 
Nosotros buscamos, con ciertas excepciones, hemoglobinas glicosiladas de siete o menos. En nuestro país más de la mitad de los pacientes tienen hemoglobinas glicosiladas no apropiadas. En otros países con un poco más de inversión se logra hasta un 35-38% de gente en mal control y un 60% en buen control. Sabemos que un tercio de los pacientes no cumple con el tratamiento y también que un tercio de los pacientes no tienen buenos valores de hemoglobina glicosilada.

Entonces el tratamiento es un punto tan fuerte como el descubrimiento de nuevos medicamentos.
No necesitamos que haya medicamentos más efectivos, necesitamos que haya un mejor cumplimiento de las pautas terapéuticas. Y ahí comenzamos a hablar de equipo de salud, de cómo se estimula y empodera a los pacientes para que ellos sean los que deciden, ya que un paciente que decide cuidarse es muy distinto de un paciente al que le imponen cuidarse. Hay una serie de temas para trabajar en ese área.

En cuanto al tema bioquímico, sabemos que la hemoglobina glicosilada es un analito relativamente caro. Medirla bien es más caro pero en nuestro país se usan métodos baratos para medirla, con un porcentaje de imprecisión grande. Este tema es preocupante.

¿Hay avances en cuanto a tratamientos más sofisticados?
Tenemos el tema del transplante, las células madre, el páncreas artificial. Hay un grupo de trabajo sobre páncreas artificial, con la gente del CIFASIS. Con ellos estamos trabajando y aguardando respuesta en cuanto a los subsidios pedidos. Espero empezar pronto con una línea en páncreas artificial, lo cual no es una panacea y está destinado fundamentalmente a los pacientes que no logran un buen control con los medios tradicionales. Sirve para ayudar de manera transitoria a algunos pacientes para saber por qué no se los puede controlar bien. Generalmente son pacientes con diabetes tipo I, que tienen muchas fluctuaciones y se los denomina pacientes lábiles.

Volviendo al tema de la historia familiar. ¿Hay identificados genes responsables de la enfermedad?
Sí, En diabetes tipo I, un 60-70 % de la carga está dada por genes del sistema HLA. También hay otros genes involucrados como el de la insulina. Uno puede hacer predicción pero no puede intervenir. En este tipo de diabetes uno tiene las herramientas para decir “esta es una persona con riesgo de tener la enfermedad de aquí a x cantidad de años”. Se pueden medir los anticuerpos, que van a ser un fenómeno por ahora sin relación patológica ya que no son los que agreden a las células productoras de insulina. Son una manifestación paralela del proceso autoinmune, mediado por los linfocitos que son los que atacan las células pancreáticas. Uno puede predecir con cierta certeza en cuanto tiempo va a desarrollar la diabetes una persona a la que se le encuentran estas combinaciones de antígenos del sistema HLA.

Con la diabetes tipo II hay herramientas también, pero es una enfermedad poligénica y tenemos más de 70 genes responsables con distintos grade de fluencia. Entonces es muy difícil porque puede haber unos pero no otros. Es más fácil predecir en base a un interrogatorio de riesgo, con 14-15 preguntas fáciles (come verduras, tiene familiares con diabetes). Esto también sería muy fácil de establecer y es una herramienta cuya difusión podemos pedir. Por ejemplo, está el cuestionario desarrollado en Finlandia el cual es autoadministrado. Se le dice al paciente, “mídase la cintura, si tiene más de 100 cm en el varón o más de 80 en la mujer, póngase un puntaje”. Esto se podría tener implementado en las salas de espera de los consultorios, por ejemplo. Es algo bastante sencillo de llevar a cabo y se obtiene una información muy rica. A las personas que saben que van a tener un riesgo de desarrollar diabetes, cuando están por encima del 20% de riesgo uno le dice que se mida la glicemia o se haga la prueba de tolerancia a la glucosa.

Sin caer en lo genético que es más acorde con los tiempos que corren, tenemos herramientas diagnósticas para identificar a los sujetos de riesgo.

En base a lo descripto, ¿la diabetes tipo I es una enfermedad autoinmune?
Sí, es una enfermedad autoinmune mediada por células con fenómenos de autoinmunidad humoral y que termina con la destrucción de las células beta. Y se asocia con otras inmunopatías, tales como hipotiroidismo o enfermedad celíaca.

¿Cómo es la calidad de vida para las personas que siguen el tratamiento?
Eso se lo tenés que preguntar a una persona que sigue el tratamiento. Hace unos 6 meses estuve en un centro en Dinamarca donde te enseñaban y te hacen vivir como una persona con diabetes. Te tenés que medir el azúcar 4 o 5 veces por día, te tenés que inyectar insulina (en realidad te inyectás solución fisiológica). Es molesto.

Como sujeto no diabético, uno no tiene la presión de preocuparse por el resultado. Cuando el paciente se pincha el dedo, no sabe si el resultado le va a dar normal o no. En los pacientes bien controlados, un 20% de las veces te van a dar resultados que no están dentro de los parámetros. Esa fuente de preocupación molesta. De todas formas tenemos que recordar que hay corredores de carreras de autos y maratonistas que tienen diabetes. Pero una cosa es el desafío de lo que podés hacer con tu cuerpo y lo que podés aceptar y otra es la preocupación de una enfermedad crónica, que es algo que no se puede evitar.

¿Cómo es el manejo de la enfermedad desde los medios?
Desde la SAD estamos siempre atentos porque nos preocupa que los pacientes estén desinformados, nos preocupan las corridas. También tenemos que respaldar a los médicos que buscan información de calidad en la SAD. Por suerte tenemos buen contacto con los medios.

Hablar de deporte de alto riesgo implica hablar de adrenalina, una hormona que puede alterar los niveles de azúcar en sangre. En un paciente diabético esto es de cuidado.

La adrenalina hace subir el azúcar en sangre. De alguna manera, la persona que lo hace está entrenada y tiene esas variables incorporadas dentro de su esquema de control. Al hacer un deporte se está consumiendo glucosa. Entonces cuando se hace una carrera larga uno se tiene que preocupar porque no te falte azúcar. Entonces están los que se desmayan porque no hacen cada 30-45 minutos una ingesta de hidratos de carbono, porque se está consumiendo glucosa y el hígado no puede producirla al ritmo que lo hace un sujeto no diabético. La señal para que el hígado empiece a producir glucosa es que baje el nivel de insulina, pero el paciente tiene insulina circulando porque se la inyectó. Entonces el paciente tiene que compensar con la ingesta la falta de producción hepática de glucosa.
 
Está bien claro que determinados alimentos son perjudiciales. Sin embargo, es difícil tomar medidas para que tengan sus rótulos, o sea que en el envase aparezca que si tomás más de dos botellas de gaseosa te aumentan los triglicéridos y te vas a volver insulino-dependiente. No es lo mismo que con el tabaco donde ya son malos conocidos y todo el mundo sabe de la mala imagen. Tratá de ponerle un rótulo a las hamburguesas o a las golosinas y decirle a las empresas que el consumo de calorías fútiles lleva con el tiempo a un aumento de peso que es perjudicial para la salud. Pero esto ya es otro tema.

Notas relacionadas

sábado, 27 de febrero de 2016

Diabetes: diagnóstico, calidad de vida y avances (Parte I)

Pablo Arias es vicepresidente del Capítulo Litoral (que abarca las provincias de Santa Fe y Entre Ríos) de la Sociedad Argentina de Diabetes (SAD). Docente-investigador de nuestra universidad, Arias nos actualiza sobre esta patología.



Por Claudio Pairoba

¿Cuáles son los objetivos de la SAD?
Dentro de las misiones de la SAD está promover el conocimiento y contribuir al bienestar de los pacientes con diabetes. También promover la investigación, la realización de eventos docentes, etc.
Yo fui presidente de la SAD hasta el ano 2014 y como me gusta y me parece que es una tarea importante para llevar adelante, este año me dedico a contribuir localmente en Sante Fe y Entre Ríos con estas actividades.
Dentro de las actividades que tienen los capítulos está organizar cada dos años una jornada regional donde se invitan profesionales de otras regiones e inclusive se han recibido invitados extranjeros. Estas jornadas se hicieron el 2 y 3 de octubre pasados en el Centro Cultural Fontanarrosa. Nuestra intención fue hacerlo un evento convocante para todas las personas que están relacionadas con la diabetes. No solo para los profesionales médicos si no también para todos los profesionales no médicos y otros miembros del equipo de salud. Para eso convocamos al Programa Provincial de Enfermedades Crónicas no transmisibles para que aporten su personal médico y de enfermería para una reunión que se realizó en paralelo con la del capítulo.
¿Cómo se puede lograr que la población tome conciencia de esta enfermedad?
Yo creo que el tema de la promoción es la única herramienta que puede llegar a mejorar la situación. Siempre digo que los que tienen el destino de la diabetes en sus manos son los educadores y la gente que hace difusión. El equipo de salud ya no alcanza. Este equipo es el contenedor de los que ya están enfermos y esto va in crescendo. No se puede jamás parar una epidemia atendiendo a los enfermos. Las epidemias hay que combatirlas en sus focos de origen y mecanismos de producción. Los mecanismos de producción en este caso tienen que ver con los malos hábitos de vida; entonces la solución del problema no está en poner más médicos, enfermeros, nutricionistas, si no en que los maestros en los colegios tengan una currícula donde la alimentación y la actividad física sean algo primordial. En el momento en que se dé ese cambio es posible llegar a parar la epidemia. Y nosotros seguiremos atendiendo.
¿Todo se puede prevenir o hay pacientes que van a atravesar situaciones complicadas?
Por cuestiones relacionadas con la edad o determinados grupos sociales con mayor predisposición o bien gente refractaria a las promociones de hábitos de calidad de vida, estos grupos van a enfermar sin duda de esta patología. De todas maneras, creo que la gran masa hay que pararla desde la educación y la promoción, y cuanto más temprano mejor.
¿Es una enfermedad fácil de diagnosticar?
Hay una clasificación dado que son muchas enfermedades con una característica común que es el aumento de los niveles de azúcar en sangre.
Hay dos formas principales que suman casi el 90 % de los casos. La más llamativa y a la que se le presta más atención es la que tiene en realidad 5 a 10 % de los casos, que es la llamada diabetes tipo I. Es la que afecta a los chicos y la que los expone a una muerte prematura si no se tratan con insulina. Antes del descubrimiento de esta hormona, estos chicos se morían en meses. Afecta sobre todo a menores de 20 años, aunque también se da en adultos pero en una proporción mucho más baja.
En el 80-85 % de los casos tenemos la diabetes tipo II que es la que afecta a los adultos más bien gorditos, pasados los 45 años, hasta hace un tiempo. Digo esto porque ahora con el sedentarismo, las pantallas, los autos, la comida chatarra, las gaseosas, la edad va bajando y en este momento tenemos adolescentes que ya tienen diabetes tipo II y por supuesto personas de 20-25 años. O sea que bajó muchísimo la edad de aparición.
¿La diabetes tiene una sintomatología típica?
La diabetes es como la presión arterial o la hipercolesterolemia, un asesino silencioso. El azúcar elevado no te da síntomas por sí solo. Los síntomas aparecen cuando se desencadenan las complicaciones: vista, riñones, pies ya que se van tapando arterias y vasos más pequeños, dando lugar a infecciones y úlceras en estas extremidades, también infecciones genitourinarias. Esto hace que el paciente vaya a la consulta.
Es muy fácil de diagnosticar porque si todas las personas de más de 40 años se hicieran un control de la glucosa en sangre una vez por año cualquier anomalía se detectaría. El diagnóstico es fácil y barato.
¿Cuáles son las medidas que la gente puede tomar para prevenir esta patología?
A la gente que tiene más de 40 años se le puede decir que se tiene que hacer un control de glicemia cada 3 años. A aquellos que además de 40 años tienen exceso de peso, o presión alta o toma medicación para el colesterol, se la tienen que medir todos los años. En un sistema de salud como el de nuestra provincia que está dentro de todo bien organizado, esto no tendría que ser algo difícil de lograr. Sin embargo, todavía cuesta como se ve en las encuestas nacionales de factores de riesgo, lo cual dicho sea de paso es algo que hay que destacar y que el Ministerio de Salud ha venido haciendo desde 2006, 2009 y 2013, realizando cortes poblacionales en más de 30.000 hogares del país, para evaluar ciertas características de las enfermedades crónicas no transmisibles. En cuanto a la diabetes, nuestra provincia está muy bien en los números. Sin embargo todavía hay una parte importante, un 40 % de la gente, sobre todo en el sector público, que no se midió nunca la glucemia.
Esto contrasta con las cifras de presión arterial, ya que al ser más asequible, o porque hay puestos donde se puede medir, hay más tendencia a controlarla. Lo que hay que lograr es que el lugar donde está el paciente en atención se preocupe porque esa persona se realice una glucemia regularmente. Entonces el diagnóstico no se escapa. El diagnóstico es barato y es certero. No es un problema el acto diagnóstico, el problema es llevar la oveja al redil.
¿Qué papel juegan los médicos en la prevención?
La tarea del médico del centro de atención de salud no es solo dedicarse a atender si no preocuparse por la salud de la comunidad que está a su cargo. En el sector privado, lo lógico sería que también se preocupen ya que si evitan que esa persona se enferme, los gastos van a bajar. Hay una política muy corta de vista con respecto a que es lo que hay que invertir para mantener una población sana dentro del sector privado. Incluso cuando se detecta la enfermedad los pacientes muchas veces tienen problemas con el acceso a la medicación y, si bien muchas veces hay abusos, lo lógico sería considerar que un paciente bien tratado es un paciente que no se complica. Por lo tanto, para una institución privada da un gasto 4 o 5 veces menor que aquel que se complica. Muchas veces hay que caer en recursos de amparo para que se le provea una determinada medicación al paciente.
¿Cuáles son las principales líneas de ataque para la diabetes?
Tenemos la currícula de superficie y la oculta. La de superficie busca medicamentos que sean más efectivos, con menos efectos adversos y esto lleva a una constante inversión de la industria porque tener un 10 % de la población como blanco es tentador desde el punto de vista económico. También buscamos llevar el control a los hogares, algo que ha mejorado muchísimo la calidad de vida con el seguimiento que se obtiene de los niveles de azúcar en sangre gracias a las tiras reactivas. Ahora se buscan mediciones continuas, con un sistema sofisticado y más caro. Sería una manera de asegurar un mejor control.
Curar la diabetes es otra gran meta, lo cual por ahora no se puede. Se puede prevenir la diabetes tipo II haciendo que las personas mantengan un régimen de vida estricto en cuanto a ejercicio (3 horas semanales de caminata rápida por ejemplo) y una alimentación que te mantenga en peso (rica en fibras y pobre en grasas de tipo animal). Esto puede disminuir hasta en un 50 % los casos de diabetes que se van a producir. Pero la diabetes tipo I por ahora no se puede prevenir.
Yo estoy trabajando en algunos factores ambientales que tienen que ver con la producción de diabetes, por ejemplo tóxicos y agroquímicos. Estamos viendo cosas relacionadas con algo que en la provincia es muy importante que es la toxicidad por arsenicales. Estas serían líneas de investigación propias. Estoy buscando asociación entre ciertas enfermedades crónicas de tipo infeccioso (como Chagas) y diabetes. Esto no forma parte de lo que le interesa a todo el mundo, si no que es más de investigación.


Notas relacionadas

Virus Sincicial Respiratorio: convocan a participar en estudio para vacuna infantil

Un equipo de científicos en Rosario participa de un estudio internacional para desarrollar una vacuna pediátrica intranasal. El objetivo es ...