lunes, 6 de diciembre de 2010

¿Hay gato encerrado con la bacteria del Lago Mono?

Por Claudio Pairoba


La Geomicrobióloga Felisa Wolfe-Simon, una de las autoras del cuestionado paper, toma muestras del sedimento en el Lago Mono.



Luego del sorprendente hallazgo dado a conocer por un grupo de investigadores referente a la bacteria que consume arsénico, han aparecido una serie de críticas a dicho trabajo y a la forma en que la NASA manejó la información.

Hoy Lunes 6 de Diciembre la microbióloga Rosie Redfield de la Universidad de British Columbia en Vancouver, expresó que el trabajo publicado en la revista Science “no presenta ninguna evidencia convincente de que el arsénico haya sido incorporado en el ADN (o en cualquier otra molécula biológica)”. En un detallado análisis del trabajo publicado en Science, la investigadora expresa “No sé si los autores son malos científicos o si estan respaldando de forma inescrupulosa la idea de la NASA de que “Hay vida en el espacio exterior!”.

La científica concluye que “en resúmen: montones de cosas sin sentido pero muy poca información confiable. Las medidas del espectrógrafo de masa pueden estar muy bien hechas (no soy una experta en este tema), pero su valor está severamente comprometido por la pobre calidad de los datos de entrada. Si un estudiante de doctorado me trajera estos datos en su reunión del comité de seguimiento, lo enviaría de vuelta a la mesada para que obtuviera mejores datos y controles”.
Muchos están diciéndole a la Dra. Redfield que envíe una carta con sus críticas a la revista Science, algo que ella considera llevar adelante.

El periodista David Dobbs de Wired Science por su parte está preocupado porque pareciera que en vez de haber encontrado una bacteria, les han metido un perro. Dobbs expresó que “si el paper es tan débil como dicen las críticas, la NASA no solo parece haber estado fanatizada sino totalmente descuidada – y Science no solo se unió al paseo, vitoreando alegremente, sino que le llenó el tanque al auto”. Dobbs agrega que la Nasa armó todo como si fuera a ser un gran festín y lo que terminaron ofreciendo fue un sencillo almuerzo sin postre.

El paleoantropólogo John Hawks de la Universidad de Wisconsin-Madison publicó en su blog un comentario titulado ¨El entusiasmo con la biología extraterrestre” en el cual se enfoca en la falta de controles de la investigación en cuestión. Hawks arranca diciendo “Hay una diferencia entre los controles que se hacen para comprobar una hipótesis de manera genuina y aquellos que se hacen cuando uno solo quiere comprobar que la hipótesis es verdadera. Los autores han hecho algo de lo último pero no de lo primero”. Comentario lapidario si los hay.
Continúa agregando “No soy microbiólogo, pero leí el paper con cuidado porque, de ser verdad, parecía ser un resultado tan interesante. Y el artículo sencillamente no incluye los controles para mostrar que el arsenato ha sido incorporado como parte del ADN. Todas las otras conclusiones publicadas en la prensa – por ejemplo, la idea de que estos organismos podrían sustituir arseniato por fosfato en la molécula de ATP – fueron una ficción total”.

El trabajo explotó en los medios de comunicación el Jueves 2 de Diciembre. Cuatro días después, arrecian las críticas sobre la forma en que los experimentos se llevaron adelante.

miércoles, 1 de diciembre de 2010

Daily pill could prevent HIV infection



The first demonstration that drugs commonly taken to treat HIV can also prevent infection in the first place was published this week (23 November).

Anti-retroviral medicines taken by 2,500 men reduced infection rates by nearly three-quarters, found the clinical trial published in the New England Journal of Medicine.
The US$43.6 million study included men from Brazil, Ecuador, Peru, South Africa, Thailand and the United States. All had had sex with men, and all carried no HIV antibodies in their blood at the beginning of the study, meaning they were not yet infected.

Those who took the antiretrovirals, as a daily pill, 90 per cent of the time had a 73 per cent reduction in their risk of becoming infected. Those with high levels of the drugs in their blood showed an even greater degree of protection, at 92 per cent.
The study "provides the first proof" that pills that control HIV in infected people can also help prevent new infections, said Robert Grant, an HIV researcher at the University of California, San Francisco, in the United States, the study's lead author.

Further studies are needed to see whether the results apply to other at-risk populations. But questions remain about whether such a strategy would work as an HIV prevention policy, with issues of cost and access in regions such as Africa.
"There, we can't even get anti-retrovirals to the people that need them," much less those who are not yet infected, said Daniel Halperin, an HIV prevention expert at Harvard School of Public Health, United States.

Link to full article in Nature

Source:
www.scidev.org

domingo, 28 de noviembre de 2010

Cracks in your concrete? You need ‘BacillaFilla’



A bacteria that can knit together cracks in concrete structures by producing a special ‘glue’ has been developed by a team of students at Newcastle University.

The genetically-modified microbe has been programmed to swim down fine cracks in the concrete. Once at the bottom it produces a mixture of calcium carbonate and a bacterial glue which combine with the filamentous bacterial cells to ‘knit’ the building back together.

Ultimately hardening to the same strength as the surrounding concrete, the ‘BacillaFilla’ – as it has been aptly named – has been developed to prolong the life of structures which are environmentally costly to build.

Designed as part of a major international science competition in the USA, the students have scooped Gold for their research.

Joint project instructor Dr Jennifer Hallinan explains: “Around five per cent of all man-made carbon dioxide emissions are from the production of concrete, making it a significant contributor to global warming.

“Finding a way of prolonging the lifespan of existing structures means we could reduce this environmental impact and work towards a more sustainable solution.

“This could be particularly useful in earthquake zones where hundreds of buildings have to be flattened because there is currently no easy way of repairing the cracks and making them structurally sound.”

As part of the research, the students have not only considered the advantages of their engineered bacteria, but also the potential risks to the environment.

The BacillaFilla spores only start germinating when they make contact with concrete – triggered by the very specific pH of the material – and they have an in-built self-destruct gene which means they would be unable to survive in the environment.

Once the cells have germinated, they swarm down the fine cracks in the concrete and are able to sense when they reach the bottom because of the clumping of the bacteria.

This clumping activates concrete repair, with the cells differentiating into three types: cells which produce calcium carbonate crystals, cells which become filamentous acting as reinforcing fibres and cells which produce a Levans glue which acts as a binding agent and fills the gap.

The nine students, whose backgrounds range from computer science, civil engineering and bioinformatics to microbiology and biochemistry, took part in the International Genetically Engineered Machines contest (iGEM), is run out of the Massachusetts Institute of Technology (MIT) in Cambridge, Boston.

The aim is to get together a team of students from a variety of backgrounds to design and genetically engineer a bacterium to do something novel and useful.

Over 130 teams took part in this year’s event and it is now the third time Newcastle University has won Gold. The team instructors were Professor Neil Wipat and Dr Jennifer Hallinan, and the advisors were Dr Wendy Smith, Dr Matthew Pocock, Dr Colin Davies, Dr Jem Stach and Professor Colin Harwood.

Professor Neil Wipat added: “The students have done extremely well – this is a great achievement. Their work will now be used as a basis for research which is being carried out here at the University.”

Source:
http://www.ncl.ac.uk/press.office/press.release/item/cracks-in-your-concrete-you-need-bacillafilla

La bacteria que puede sustituir al cemento

Modificada genéticamente, consigue rellenar grietas en los edificios al reproducirse y segregar una especie de «pegamento» tan resistente como el hormigón.



Científicos de la Universidad de Newcastle ha modificado genéticamente una bacteria que se encuentra en los sueldos de casi todo el mundo para que adquiera la capacidad de rellenar las aberturas y grietas que se producen en estructuras de concreto. Cuando se encuentra en contacto con el cemento, esta bacteria se reproduce y segrega carbonato de calcio y una especie de pegamento que, juntos, poseen una solidez semejante a la del concreto. Sus creadores afirman que es el fin de las grietas, pero ¿no podrían resultar peligrosas?

¿Quien no ha visto una grieta en una pared? Las estructuras rígidas, aún las que mejor han sido construidas, tienen una inconveniente tendencia a rajarse. Por eso los ingenieros refuerzan sus obras más importantes con hierros, buscando la manera de proporcionar mayor solidez al conjunto. Pero aunque no lleguen a poner en peligro la estabilidad de un puente o edificio, las fisuras que se presenten en muros y fachadas deben ser selladas, ya que la acción de la lluvia y demás elementos puede convertir una pequeña grieta en un gran problema. Es difícil estimar cuanto dinero se gasta en el mundo reparando ese tipo de daños, pero seguramente no debe de ser una cifra pequeña.

Un grupo de nueve estudiantes de la la Universidad de Newcastle podría acabar con este problema, gracias al “trabajo” de una pequeña bacteria modificada genéticamente. Estos alumnos, procedentes de carreras tan dispares como la informática, la ingeniería civil, la microbiología y la bioquímica, participaron en el concurso Internacional Genetically Engineered Machines (iGEM, o Máquinas Manipuladas Genéticamente), que organiza el Instituto de Tecnología de Massachusetts (MIT) en Cambridge, Boston.

El objetivo del iGEM es incentivar a los estudiantes para que desarrollen organismos -generalmente bacterias- mediante técnicas de ingeniería genética para que puedan hacer algo nuevo y útil. Más de 130 equipos participaron en el evento de este año y es la tercera vez que la Universidad de Newcastle consigue el oro. El trabajo de estos estudiantes ha producido una bacteria, llamada BacillaFIlla, que es capaz de sellar grietas en estructuras de hormigón.

Excretan calcio y cola
Los microbios originales, una bacteria común que vive en los suelos, fueron modificados genéticamente para introducirse en las delgadas grietas existentes en el hormigón. Una vez allí, comienzan a reproducirse y excretar una mezcla de carbonato de calcio y cola, que al endurecerse adquiere una rigidez semejante a la del cemento, sellándola. Esto contribuye de forma directa a prolongar la vida útil de las estructuras expuestas al medio ambiente, a un costo ridículamente bajo. Además, estas reparaciones podrían tener un positivo impacto ecológico.

La Doctora Jennifer Hallinan, instructora del equipo ganador del iGEM, explica que “alrededor de cinco por ciento de las emisiones de dióxido de carbono provocadas por el hombre provienen de la producción de hormigón, siendo esta actividad una importante contribución al calentamiento global. Encontrar una forma de prolongar la vida útil de las estructuras existentes significa que podríamos reducir este impacto ambiental, y trabajar hacia una solución más sostenible.” En este contexto, la BacillaFilla con su utilísima habilidad podría convertirse en el invento del año.

Gen de autodestrucción
Hallinan cree que la bacteria “podría ser particularmente útil en zonas de terremotos, donde cientos de edificios tienen que ser derribados porque no disponemos de una forma simple de reparar las grietas y devolverles sus buenas condiciones estructurales." Sin embargo, hay otros factores a tener en cuenta. Por ejemplo, es lícito preguntarse qué ocurre con estos bichos una vez que la grieta en la que tan a gusto se han reproducido como conejos está sellada. ¿Adónde van? ¿No existe el peligro de que se multipliquen peligrosamente, sellando ranuras que en realidad no son grietas sino partes necesaria de la estructura? Dada la importancia de estas cuestiones, los integrantes del equipo han previsto que la BacillaFilla sólo comiencen a reproducirse cuando están en contacto con el hormigón -"reconocen” el pH específico de este material- y le han adosado un “gen de autodestrucción” que impide que puedan sobrevivir en el medio ambiente.

Todo parece haber sido previsto. Las bacterias llegan a un muro, comienzan a introducirse en las grietas, y “saben” que han llegado al fondo de la misma debido al incremento del número de bacterias a su lado. Esta situación activa el funcionamiento de la colonia, que está compuesta por tres tipos de individuos: los que producen cristales de carbonato de calcio, los que se convierten filamentos de refuerzo y las que producen un pegamento que actúa como agente de enlace y llena el vacío. Sin dudas, se trata de un gran avance que posee el potencial de solucionar un gran problema a la vez que protege el medio ambiente. Solo habría que comprobar a fondo la eficacia del “mecanismo de autodestrucción” incorporado en sus genes para no terminar con enorme problema entre manos.

Fuente:
http://www.abc.es/20101122/ciencia/bacteria-puede-sustituir-cemento-201011221617.html

viernes, 26 de noviembre de 2010

“Alimento maravilla” se extiende al Medio Oriente.

Hazem Badr
Traducción de Claudio Pairoba
23/11/10


¿Puede la spirulina pasar de un ingrediente gourmet en Occidente a una nutritiva fuente alimenticia para el mundo en desarrollo?

Una nutritiva alga verde azulada, conocida como spirulina, ha sido agregada a las comidas escolares en Jordania para combatir la malnutrición crónica y la anemia entre los niños.

Casi uno de cada 10 niños jordanos sufren de malnutrición crónica, o de deficiencia energética o protéica de larga data, mientras que un tercio están anémicos, de acuerdo a una encuesta por Departamento Jordano de Estadística la cual fue hecha pública en Marzo.

La Institución Intergubernamental por el Uso de la Micro Alga Spirulina contra la Malnutrición (IIMSAM por sus siglas en inglés), la cual tiene estatus de observadora con el Consejo Económico y Social de las Naciones Unidas, dice que la spirulina es rica en proteínas y vitamina B, y contiene beta caroteno que puede ayudar a superar problemas visuales causados por la deficiencia en vitamina A. Una cucharada sopera diaria puede eliminar la anemia por déficit de hierro, la más común de las deficiencias en minerales.

De acuerdo a la IIMSAM, un plan de alimentación piloto en dos escuelas de Kenia desde April del 2009 a Abril del 2010 ayudó a curar a 1350 alumnos que sufrían de malnutrición. El Programa de Alimentación Mundial estima que un 22 % de los niños por debajo de los 5 años en Kenia están malnutridos, bastante por encima del 15 % que la Organización Mundial de la Salud usa como límite para describir una situación de emergencia.

Naseer S. Homoud, director de la Oficina del IIMSAM para el Medio Oriente, dijo que la spirulina desempeña un papel en la lucha contra la malnutrición, especialmente en niños, y se refirió a “su bajo costo de desarrollo ya que puede crecer incluso en tierra infértil y sin una gran provisión de agua.”

“Los cambios climáticos están afectando nuestras maneras tradicionales de producir alimentos – tenemos que encontrar formas no tradicionales de nutrición,” expresó el Ministro de Agricultura Mazen Khasawneh. Pero no comentó acerca de las pruebas con la spirulina. “Todavía es demasiado temprano para saber si es un experimento exitoso o no,” comentó.

Las primeras indicaciones son que los chicos en las primeras etapas de la educación primaria no llevan a la escuela comidas con agregado de spirulina. Khaled Sarhan, un alumno, dijo que, al principio, no le gustaba el sabor de las galletitas con gusto a spirulina, pero que “después de que mi maestra me dijo lo útil que es, me acostumbré al sabor después de 2 ó 3 dias.”

“El sabor amargo de la spirulina va a ser el principal problema para que se vuelva más popular entre los niños”, Ahmed Khorshed, Profesor de Industrias Alimenticias en el Centro de Investigación en Agricultura de Egipto expresó, “pero agregarla a otros alimentos, como las galletitas, podría resolver el problema del sabor de manera parcial.”

El proyecto va a depender del Ministro de Agricultura para Junio del 2011. Si es exitoso, las comidas con spirulina van a expandirse e incluso llegar a otras partes del Medio Oriente.

“Egipto será nuestra próxima parada,” IIMSAM manifestó Remigio Maradona, director general del IIMSAM.

Fuente:
www.scidev.net

Virus Sincicial Respiratorio: convocan a participar en estudio para vacuna infantil

Un equipo de científicos en Rosario participa de un estudio internacional para desarrollar una vacuna pediátrica intranasal. El objetivo es ...