domingo, 16 de junio de 2013

Corrientes: Ciencia, Investigación, y Pasión por la Comunicación (segunda parte).

Invitado por la Secretaría de Ciencia y Tecnología de la Universidad Nacional del Nordeste (UNNE) a cargo de la Dra. Silvia Mazza, tuve oportunidad de asistir a la XIX Reunión de Comunicaciones Científicas y Tecnológicas como miembro del panel “Acerca de los productos de la actividad científico-tecnológica”.  



La charla
La audiencia estuvo integrada en su mayoría por becarios que desarrollan sus actividades en la UNNE. Por eso me pareció apropiado enfatizar que ellos son los protagonistas del cambio cultural que estamos transitando: la comunicación de la ciencia como actividad inherente a la actividad científica. Es un tiempo interesante (como dirían los chinos) donde las funciones, responsabilidades e incumbencias de todos los que estamos relacionados con la ciencia están siendo replanteados. Con las herramientas adecuadas, todos podemos hacer comunicación científica. Cada uno con su estilo, su mirada y su aporte. Los periodistas preparándose con mayores conocimientos sobre ciencia, (sobre todo de las llamadas ciencias duras) y los científicos con herramientas comunicacionales.

Si bien todavía se puede lograr una mayor presencia de la ciencia en los medios de comunicación, creo que no es sabio ni justo esperar que ellos se ocupen de todas las necesidades comunicacionales de los científicos. Los científicos pueden generar sus propios contenidos, más en los tiempos que corren, donde los avances tecnológicos nos muestran variedad de formas de comunicar. Es solo cuestión de interesarse y aprender o bien acercarnos a aquellos que pueden ayudarnos en la tarea.

A través de blogs, de las páginas de las universidades nacionales, de los laboratorios de investigación, se pueden generar textos de divulgación. Algunos lo harán como una obligación ante un requerimiento administrativo, otros como un camino para mejorar su actividad. Otros, directamente no lo harán. Como dice el dicho “cuando uno no quiere, dos no pueden”. No se puede obligar a hacer comunicación científica a un científico que no quiere hacerlo. Es más productivo concentrarnos en aquellos que sí están interesados en avanzar en esta actividad que forma parte, queramos o no, de la actividad científica.

Hasta ahora se lo pudo evitar. Hoy, con el desarrollo tecnológico existente y con un ministro de Ciencia, Tecnología e Innovación Productiva que pide a los investigadores que cuenten lo que hacen y busquen aplicaciones potenciales para sus trabajos, y universidades con un firme compromiso de acercarse a la sociedad para resolver los problemas regionales más acuciantes, ya no podemos seguir evitando comunicar la ciencia. No sin que haya consecuencias. Que las mismas tarden en aparecer, no quiere decir que no vayan a hacerlo. Sería positivo anticiparse.

La pasión como base de la comunicación
Los años pasan y las relaciones se desgastan. No es distinto en el caso de los científicos y su relación con la ciencia. Esa atracción inicial por la ciencia, el conocimiento y las ganas de construirlo puede transformarse por la inevitable rutina asociada con gestiones administrativas para conseguir fondos, tratar con colaboradores en todos los niveles y manejar cuestiones alejadas del trabajo experimental. La presión y responsabilidad se incrementan a medida que se avanza en la carrera de investigación. No es raro entonces, que muchas veces se olvide la razón por la cual se comenzó en esa actividad. La tarea de investigación se elige por vocación y no debería ser un trabajo al que uno se sienta obligado a concurrir. A pesar de esto, y en medio de ese torbellino de actividades extra investigación, la pasión inicial va menguando.

Planteo que la comunicación científica puede ser un camino para reavivar esa pasión y amor por la profesión. Mostrarles a los demás la pasión puesta en el trabajo de investigación diario, contarles el día a día de nuestra actividad científica, ayuda a que la sociedad comprenda mejor que es esto de hacer ciencia e investigar, al mismo tiempo que puede estimular la misma pasión en los nuevos recursos humanos que la ciencia necesita atraer continuamente. También ayuda al científico a replantear su trabajo, a reconocer sus logros, enfrentar sus miedos y fracasos y asumirse como un ser humano que hace ciencia.

La experiencia correntina
Un párrafo aparte merece la calidez con que me recibieron en la UNNE. Va mi especial agradecimiento para la Dra. Silvia Mazza, la Lic. Francisca Milano y para Damian Gonzalez, todos de la Secretaría de Ciencia y Técnica de la universidad con sede en Corrientes, y campus en esa provincia y en la vecina Resistencia, Chaco. El puente que hace poco cumplió 40 años une a estas dos provincias que comparten el ancho y torrentoso Paraná. También agradezco a Laura Ramírez y Gloria Gimenez, las docentes-investigadoras que me acercaron a Corrientes luego de terminar con las actividades del día. Volví con una sensación de enriquecimiento tanto en lo personal como en lo académico.


Monumento al Sgto. Cabral e iglesia Nstra. Sra. del Rosario (Fotos: C. Pairoba)

Atardecer en la costanera correntina (Foto: C. Pairoba)


A pesar de la breve visita pude recorrer la famosa costanera correntina y disfrutar de su serenidad, además de las calles de Corrientes: la plaza seca con la estatua del Sgto. Cabral (¿sabían que era correntino?), la iglesia de Nuestra Señora del Rosario, el Museo Provincial de Bellas Artes Dr. Juan Ramón Vidal (que funciona en la que fuera la casa del gobernador, caudillo y líder del Partido Autonomista de Corrientes, posteriormente donada por su esposa). Allí Elisa Ramírez (hermana de Gloria) me guió por las salas restauradas y me contó sobre la historia de la casona, sus propietarios y la pinacoteca del museo. En la sala azul se exhibe, entre otras obras, un Quinquela Martin, lo que motivó que Elisa me contara sobre su experiencia como restauradora de varias obras de este ilustre pintor argentino, nacido en Rosario y luego adoptado por una familia del barrio de La Boca en Buenos Aires.

En síntesis, una experiencia provechosa en todos los aspectos y que espero se repita.

Audios de las charlas:

1. Dra. Nélida Peruchena (publicación de trabajos en ciencias duras)


 2.Dra. María Silvia Leoni (publicación de trabajos en Cs. Sociales)

3. Charla Dra. Liliana Ramirez (Innovación y Transferencia)


4. Charla Dr. Pedro Sansberro (Innovación y Transfererencia: clonación de yerba mate)


5. Charla Dr. Claudio Pairoba (Ciencia en medios de comunicación masivos)


6. Palabras de cierre de la Dra. Silvia Mazza (Sec.C y T - UNNE)


sábado, 15 de junio de 2013

Corrientes: Ciencia, Investigación, y Pasión por la Comunicación (Primera parte).

Por Claudio Pairoba




Invitado por la Secretaría de Ciencia y Tecnología de la Universidad Nacional del Nordeste (UNNE) a cargo de la Dra. Silvia Mazza, tuve oportunidad de asistir al XIX Reunión de Comunicaciones Científicas y Tecnológicas como miembro del panel “Acerca de los productos de la actividad científico-tecnológica”. Los disertantes (cinco en total) expusimos sobre las formas en que estos productos son dados a conocer, ya sea a través de transferencia tecnológica o producción de papers científicos provenientes tanto de las ciencias duras como de las ciencias sociales. El tema de mi charla se centró en la presencia de estos productos bajo la forma de notas científicas en los medios de comunicación masivos.

Los restantes expositores fueron los doctores Nélida Peruchena (investigadora de la Facultad deCiencias Exactas de la UNNE), María Silvia Leoni (directora del Instituto de Investigaciones Geohistóricas (UNNE-CONCET), Liliana Ramirez (investigadora del Departamento de Geografía de la Facultad de Humanidades de la UNNE) y Pedro Sansberro (investigador del Instituto de Botánica del Nordeste (UNNE-CONICET)).  


El ámbito del XIX Encuentro de Ciencia y Tecnología
El encuentro se desarrolló durante tres días (12 al 14 de junio) en el aula magna del Campus Universitario Resistencia. La sensación de familiaridad que me invadió al ingresar a dicho salón tenía su justificativo: la construcción es una copia, casi exacta diría yo, del Hogar Escuela Eva Perón de la vecina localidad de Gdro. Baigorria. Preguntando, me comentaron que el predio había albergado al Hogar Escuela de Corrientes, el cual luego se trasladó, siendo sus instalaciones ocupadas por la universidad. La mañana del primer día estuvo dedicada al panel mencionado y durante la tarde se premiaron los trabajos presentados por becarios. Durante los dos días siguientes se dieron a conocer trabajos distribuidos en cinco áreas: Cs. Agropecuarias, Cs. Exactas y Naturales, Sociales/Humanísticas/Artísticas, Tecnologías y Cs. Médicas

Ciencia, medios y razones para comunicar
La presencia de noticias científicas en los diarios argentinos (el medio que fija la agenda para los restantes) en los últimos años viene en franco aumento. Eso es positivo. Lo que no es tan positivo, según un interesante trabajo de Hector Palma es la calidad de los artículos que se escriben. Sumado a esto, una encuesta llevada a cabo por el Observatorio Nacional de Ciencia, Tecnología e Innovación Productiva indica que el formato predominante en los textos científicos es el de noticia. Poco hay de periodismo científico crítico, ahondando en las implicancias sociales, consecuencias, conflictos de intereses, etc., relacionados con el tema descripto. Palma plantea un replanteo de las razones para comunicar ciencia, porque las razones esgrimidas hasta el momento no se verifican en los artículos que aparecen en los diarios.

(Continúa en la próxima entrega). 

Nota relacionada aquí

jueves, 13 de junio de 2013

La idea de crear biolíderes.

El proyecto que lanzó Alejandro Vila del Instituto de Biología Molecular y Celular de Rosario (IBR), creó estos talleres de dos días con no-científicos, no sólo para que vean para qué sirve la ciencia básica, sino además para que participen en la idea de la no neutralidad en la aplicación de la ciencia.

Todo el grupo que participó del taller. Incluidos el gobernador Bonfatti y la intendenta Fein.


Por Pablo Feldman

El viernes y sábado pasados, el Instituto de Biología Molecular y Celular de Rosario (IBR) organizó el primer taller de Biotecnología para Líderes. La generosidad de los convocantes hizo que este cronista formara parte de la primera camada de lo que se llama -con el mismo derroche de amabilidad- Biolíderes. 

La historia comenzó hace un par de semanas, cuando Alejandro Vila cursó la invitación a una docena de personas y pidió reserva para evitar -según dijo en su conferencia de cierre- que le birlaran la idea y se hiciera algo de características similares en la Ciudad de Buenos Aires, por citar un ejemplo. Vila junto a una veintena de investigadores del CONICET se trasformaron en los anfitriones de un grupo heterogéneo en su edad, profesión, formación y seguramente expectativas.

¿Qué se hizo durante esos dos días en el IBR, qué hicimos? -permítaseme utilizar la primera persona-. Aunque parezca mentira, ataviado cada uno con su guardapolvos y guantes de latex, pudimos purificar ADN, aislar, manipular y caracterizar un gen. Ese mismo gen, en la segunda jornada, fue insertado en una bacteria de tal modo que se creó un organismo transgénico. Naturalmente, los grupos fueron integrados por dos "alumnos", en mi caso compartiendo la mesa de trabajo -aunque cada uno con sus pipetas, tubos, maquinas centrífugas y demás elementos- con Oscar De Fante y guiados por la doctora Susana Checa.

En otros grupos se vio trabajar alejados del armado de listas a Omar Perotti y Roberto Sukerman, al colega David Narciso con Miguel Lifschitz, a Monica Fein -que llevaba una evidente ventaja por su formación bioquimica- con Carlos Kretz -titular de la fábrica de balanzas- y severo impulsor del "control de calidad" de los experimentos, también al secretario de Ciencia y Técnología David Asteggiano. Además, al gobernador Antonio Bonfatti -que aprovechó los breaks para "atender" a sus ministros- junto al reconcentrado vicerrector de la Universidad Nacional de Rosario, Eduardo Seminara.

Cuatro horas la mañana del viernes, un intermedio para almorzar, otras cuatro horas, y la mañana del sábado hasta desembocar en un almuerzo de colación de grados. Durante esas jornadas, no sólo se trabajó en el laboratorio, manipulando elementos y genes; sino también compartiendo historias, anécdotas y relatos de un grupo de científicos que en nada se parecen al estereotipo del atormentado con los pelos volados, o el que no combina sus ropas, o que desprecian el maquillaje en el caso de la mujeres. Gente como todos, pero distinta, con un sentido de la vida profundo como que trabaja con los orígenes, con la génesis. Distintas edades, especialidades, logros y trayectorias, todos saben allí quién es quién, pero se trasunta un espíritu de cuerpo pocas veces visto en ámbitos donde la competencia también está presente.

Los mayores, como Néstor Carrillo o Diego de Mendoza son reconocidos tácitamente por sus pares, que son pares, pero que saben quiénes son los maestros. Una generación intermedia, que tomó la posta y que encarnan "Tato" Vila, Fernando Soncini, Elelonora García Vescovi, Nora Calcaterra -por citar sólo algunos-. También los que tomarán la posta en el futuro, todos doctorados de entre 30 y 40 y pico, con muchas horas de laboratorio y sentido común, como Javier Palatnik, Claudia Banchio, Jorgelina Ottado -una agrónoma "infiltrada" entre tanto bioquímico y biólogo- Pablo Armas, Gabriela Gago, Susana Checa (nuestra lazarillo) Leticia Llarrull, Juan Manuel Debernardi, Gisella Di Venanzio, y además Marta Vijande que seguramente se ha ocupado de que todo funcionara también fuera del laboratorio.

¿Para que sirve esto?
La misma pregunta para dos respuestas diferentes. La primera, y más importante, hace alusión a la "ciencia básica" que es lo que se desarrolla a gran nivel en 25 programas diferentes en el IBR. Es el conocimiento en estado puro, el punto de partida de todo lo demás, el origen de la vida. Carlos Finlay, "el cientifico de los mosquitos" como se lo conoce vulgarmente, fue un incansable batallador de la lucha contra la fiebre amarilla, al punto que el día del médico se celebra el 3 de diciembre porque ese fue el día que nació. Un día estaba estudiando y revisando sus notas y lo distrajo el zumbido de un mosquito y fue en ese instante que cambió la historia y dedicó el resto de su larga vida a establecer que el vector era el agente transmisor.

En el IBR, a Diego de Mendoza -primer director y durante más de una década al frente de la institución- se le ocurrió un día preguntarse: "Si hay bacterias flacas y gordas y si son todas iguales, y si son todas iguales por qué razón". Así lo contó él mismo en una de las clases magistrales, que fueron varias y que fueron tales no sólo por el nivel de los expositores sino porque hasta quien esto escribe logró entenderlas.

Fue así que descubrió -con su grupo- que después de producirse biodiesel, la glicerina (que es en principio el material desechable) puede manipularse genéticamente, con la incorporación de una bacteria y crear más biodiesel. Esto tiene, además del hallazgo, una clara aplicación y un evidente impacto en la industria y por tanto en el desarrollo económico de un país.

Entonces el primer "¿para qué?" estaría sobradamente explicado. Sin embargo los que hacen ciencia básica, en el ámbito del Estado no tienen ese imperativo (categórico) de hacer algo que sea rentable, o no en términos económicos. Pero sí en términos sociales, y es así que bajo la misma lupa o microscopio, las bacterias que sobreviven a altas temperaturas mientras haya liquido, y posibilitan esos avances en la industria, permiten también, mediante su manipulación establecer la identidad de un centenar de niños nacidos en cautiverio o secuestrados de sus hogares, como sucedió con los nietos recuperados por la Abuelas de Plaza de Mayo, cuyo afiche fue lo último que se vio en la ponencia de Vila, al cerrar las jornadas. "La ciencia debe ser neutral" dijo el director del IBR -parafraseando a Joan Manuel Serrat en "Sería fantastic"- pero no su uso".

Y eso explica el segundo "¿para que?". ¿Para qué convocar a una docena de "líderes"?. Precisamente para que no sean neutrales. Para que se tome contacto directo con lo que se está haciendo, para que transmitan la importancia de invertir en recursos no sólo tecnológicos sino también humanos.

En California, contó Vila, se invirtieron 40 mil millones de dólares en diez años en ciencia básica en tres universidades. No sólo obtuvieron treinta premios Nobel, sino que se desarrollaron 600 empresas de biotecnología. Algo parecido ocurrió en Boston, allí están el célebre MIT (Massachusetts Institute of Technologu) y Harvard, se inviertieron 26 mil millones de dólares en ciencia básica: 25 premio Nobel y 500 empresas de biotecnología.

Pero más allá de la contundencia de los datos, tal vez la "explicación" más convincente la aportó el físico Michael Faraday, cuando presentó hace casi 200 años la "inducción electromagnética", algo que hoy permite que haya electricidad.

Alguna vez, un periodista (como dijo Bernard Shaw, una profesión que refleja "un océano de conocimientos de un centímetro de profundidad") le preguntó al científico británico "¿para qué sirve la ciencia básica?". Faraday hizo una pausa, levantó la vista y le respondió: "Dígame usted para qué sirve un recién nacido y yo le digo después para que sirve la ciencia básica".

Fuente:
www.pagina12.com.ar

domingo, 9 de junio de 2013

Falta de sueño: la pesadilla de los estudiantes.

Estados Unidos está a la cabeza de la lista de jóvenes estudiantes con problemas de sueño.La falta de sueño es un significativo factor oculto en el descenso del desempeño en jóvenes en edad escolar, de acuerdo a una investigación llevada a cabo a nivel internacional. El problema es particularmente importante en países ricos. Los expertos en el tema vinculan la falta de sueño al incremento en el uso de teléfonos celulares y computadoras en los dormitorios a altas horas de la noche.


Estudiante dormida

La falta de sueño es un problema tan serio que la enseñanza escolar ha tenido que disminuir su dificultad para acomodarse a los estudiantes con problemas de sueño, indica el estudio.

La comparación de los datos a nivel internacional llevada a cabo por el Boston College encontró que Estados Unidos tiene el número más alto de estudiantes con falta de sueño. El 73% de los estudiantes de 9 y 10 años de edad y el 80% de estudiantes de 13 y 14 años fueron identificados por sus maestros como muy afectados.

En pruebas de lectura el 76% de los estudiantes de 9 y 10 años tenían el mismo problema de privación del sueño.

Los datos fueron mucho más altos que el promedio internacional de 47% en estudiantes de primaria y 57% en el grupo de secundaria.

 

Análisis robusto 

Otros países con altos índices son Nueva Zelanda, Arabia Saudita, Australia, Inglaterra, Irlanda y Francia. Finlandia, con muy buena fama debido a su excelente sistema educativo, también está entre las naciones que encabezan las cifras de estudiantes que sufren falta de sueño.

Entre los países con datos donde los jóvenes sí gozan de buen descanso están Azerbaiyán, Kazajistán, Portugal, República Checa, Japón y Malta.
El análisis fue parte de un enorme proceso de recabación de datos para establecer un ránking sobre educación global denominado: Tendencias en Matemáticas y Ciencia y el Progreso en el Estudio Internacional de la Lectura (TIMSS y PIRLS por sus siglas en inglés).

Estos análisis están entre los más completos para los estándares de educación. Las pruebas las tomaron más de 900.000 estudiantes de primaria y secundaria en más de 50 países.

Los resultados del ránking para matemáticas, ciencia y lectura fueron publicados a finales del año pasado y los sistemas educativos de países asiáticos fueron los que destacaron en todas las tablas.

Sin embargo, los investigadores también querían saber más sobre la influencia que ejercen los hogares en los jóvenes estudiantes. Se ha escrito mucho sobre el impacto de la riqueza y la pobreza, pero los investigadores del Boston College también querían medir datos como el sueño y la nutrición.

Por ello las pruebas fueron acompañadas de cuestionarios para maestros, estudiantes y padres sobre patrones de sueño. Esta información fue comparada con los resultados de las pruebas académicas, por lo que los resultados de los exámenes en matemáticas, ciencia y lectura fueron cotejados con los niveles de sueño.

"Creo que subestimamos el impacto del sueño. Nuestros datos muestran que a nivel internacional, en promedio, los niños que duermen más tienen mejor desempeño en matemáticas, ciencia y lectura. Eso es exactamente lo que muestran nuestros datos", afirma Chad Minnich, del Centro de Estudio Internacional TIMSS y PIRLS.

"Es el mismo vínculo para niños que no tienen buena nutrición", asegura Minnich, quien trabaja en la Escuela de Educación Lynch del Boston College.

"Si no puedes concentrarte, prestar atención, no puedes alcanzar tu nivel óptimo porque tu mente y tu cuerpo necesitan algo más básico".
sueño
Enemigos del sueño: celulares y computadoras.

"El sueño es una necesidad fundamental para todos los niños. Si los maestros reportan un importante número de niños sufriendo falta de sueño, esto tiene un impacto significativo".

"Pero peor que eso es el hecho de que los maestros están teniendo que modificar sus instrucciones dependiendo de los estudiantes que están sufriendo falta de sueño".

"Los niños con falta de sueño tienen instrucciones menos complicadas".
Incluso los niños que duermen bien sufren de estas modificaciones. 


 Por qué no duermen  
Lo que el estudio no muestra muy claramente es por qué los jóvenes no están durmiendo bien o por qué países con importantes avances tecnológicos lucen tener los mayores problemas.

Sin embargo, expertos en el sueño señalan como una de las razones la tecnología en los dormitorios de los niños, especialmente el uso de teléfonos inteligentes o laptops muy tarde en la noche.

No solo los jóvenes se mantienen despiertos mandando mensajes a sus amigos usando internet. La luz de las pantallas muy cerca del rostro físicamente interrumpe el escenario natural para el sueño.

"Al tener una pantalla de computadora que está a apenas ocho pulgadas del rostro te expone a mucha más luz que ver un televisor que está al otro lado de la habitación", asevera Karrie Fitzpatrick, investigadora del sueño de la Northwestern University en Illinois.

"Eso le va a decir a tu cerebro que te mantengas despierto", afirma Fitzpatrick.

"Esa luz puede reprogramar todo el sistema del ritmo circadiano y decir 'espera un minuto, no es el momento de ir a la cama'".

La falta de sueño también es una seria barrera física para aprender.

"La falta de sueño es un problema a todos los niveles que es relevante en el aprendizaje, la memoria y el desempeño académico", dice Derk-Jan Dijk, director del Centro de Estudio del Sueño de la Universidad de Surrey, en Reino Unido.

Las investigaciones en los desórdenes en el sueño y las funciones del cerebro han mostrado la importancia que tiene el sueño en la memoria y la consolidación de la información.

Sin sueño, el cerebro tiene problemas para absorber y retener ideas.


Sueño y desempeño académico
"Hay un creciente interés en la asociación que hay entre un sueño adecuado y el desempeño académico", indica Dijk.

Por su parte Fitzpatrick señala que la falta de sueño va a dejar a jóvenes estudiantes más emocionalmente volátiles, con menos capacidad de concentración y físicamente problemáticos a la hora de aprender.

Agrega que la pérdida de sueño y los esfuerzos por recuperarlo a corto plazo puede causar interrupciones más complejas en la manera en cómo el cerebro almacena información.

Pero hay buenas noticias. Si comienzas a dormir bien de manera cotidiana, la falta de aprendizaje se revierte.

"Mientras no llegues a un extremo de privación del sueño y regreses a un sueño de siete a nueve horas en la noche y mientras no haya un daño permanente probablemente puedes restaurar la funcionalidad de acumular, procesar y recolectar memoria", indica Fitzpatrick.

"Las bases del aprendizaje seguramente volverán a los niveles normales".

De otra forma, tratar de estudiar sin dormir va a ser bien difícil. "Tu cerebro funciona vacío".

Fuente:
www.bbc.co.uk/mundo

jueves, 6 de junio de 2013

Buscando soluciones sustentables: el desafío de los biocombustibles y el papel de las algas.

Julieta Barchiesi nos cuenta sobre las algas como nueva opción para la obtención de biocombustibles.


Las algas se posicionan como una fuente alternativa para la obtención de biocombustibles.

Julieta Barchiesi*
En las próximas décadas el mundo necesitará enormes cantidades de energía para respaldar el crecimiento económico y poblacional, y para mejorar los estándares de vida. Los suministros de energía convencionales lucharán para seguir el ritmo de la demanda, y la energía se deberá producir de forma ecológica y socialmente responsable. Simultáneamente, será necesario alimentar la población mundial creciente. Esto incrementará la presión en el medioambiente, la tierra cultivable, las reservas de peces y el suministro de agua pura. Las algas son la gran promesa debido a que son una fuente de energía para biocombustibles con baja emisión de dióxido de carbono (CO2), y como suplementos dietario animal.

Los biocombustibles son alcoholes, ésteres y otros compuestos químicos producidos a partir de la biomasa, residuos de la agricultura y de la actividad forestal, y desechos industriales. Entre otros podemos incluir al bioetanol, biodiésel, biohidrógeno, biometanol; siendo los dos primeros los más desarrollados y empleados. La biomasa hace referencia a toda materia que puede obtenerse a través de la fotosíntesis, proceso mediante el cual la mayoría de las especies vegetales generan azúcares utilizando energía solar. A partir de sustancias simples como el agua y el dióxido de carbono, esta energía se almacena en forma de moléculas de glucosa, almidón, celulosa y aceites.

UNA SOLUCIÓN A BASE DE ALGAS
Las algas son la fuente de materia prima menos publicitadas para biocombustibles, a pesar de que muchas de ellas tienen un alto potencial para solucionar la dependencia mundial de los combustibles fósiles y limitar las emisiones de CO2 asociadas al cambio climático global. Las microalgas son organismos fotosintéticos que se encuentran tanto en el mar como en agua dulce y poseen un mecanismo de fotosíntesis muy similar al de las plantas terrestres. Están a la vanguardia de la investigación en los esfuerzos destinados a desarrollar tecnologías y sistemas modelos para la producción renovable de hidrógeno y otros biocombustibles como biodiesel y bioetanol. Su procesamiento es simple, debido a su pequeño tamaño y a que carecen de lignocelulosa, un polisacárido presente en todas las fuentes de biomasa terrestres que complica el proceso de conversión de la biomasa en biocombustible. En relación con las plantas terrestres, las microalgas son más eficaces en la conversión de la luz del sol a energía química. Pueden producir una cantidad de aceite por metro cuadrado substancialmente mayor que los aceites de semillas tradicionales y además, disminuir los niveles de CO2, ya que las algas consumen este gas mientras emiten oxígeno puro. Las algas no compiten por terrenos cultivables con las plantas terrestres, muchas cepas de algas pueden crecer en agua de mar o aguas residuales, preservando las valiosas fuentes de agua dulce. Su ventaja a nivel económico se basa en la alta eficiencia de las algas unicelulares para la conversión de energía solar respecto de los cultivos. Por esta y otras razones, las microalgas tienen muchas ventajas sobre las plantas terrestres en lograr uno de los desafíos más grandes a nivel mundial: obtener una forma de energía segura y sostenible, y reducir la emisión de gases de efecto invernadero.

Además, y respecto a la remediación ambiental, las microalgas secuestran naturalmente CO2 de la atmósfera. Sin embargo, para cubrir las necesidades del rápido crecimiento de una granja de algas, se necesitan cantidades de CO2 adicionales. La solución es capturar CO2 emitido por plantas industriales, tales como usinas, fábricas de cemento y fábricas de etanol, que de lo contrario serían una fuente de contaminación ambiental. Así, una fuente potencial de calentamiento global es convertida en una fuente de materia prima de combustión limpia para biocombustibles. Además, todos los otros métodos usados para mitigar el CO2 solo lo secuestran; no lo convierten en productos útiles o energía; por lo tanto el uso de microalgas es el mejor método para combatir el cambio climático.

EL ALMIDON
El almidón ha adquirido un inmenso valor en la vida humana, siendo la fuente de calorías más importante en nuestra alimentación, y como un recurso renovable y precursor de nuevos materiales biodegradables en el medio ambiente. En los últimos años, se ha incrementado la utilización de almidón y sus derivados en la industria, a partir de su uso como materia prima, compitiendo con aquellas derivadas de productos a base de petróleo. La modificación de la vía de síntesis de almidón, permite generar nuevos almidones con propiedades mejoradas y nuevas aplicaciones industriales. Sin embargo, uno de los problemas de su uso para biocombustibles es que compite con la alimentación de la población.

Ante esta problemática, la comunidad científica se interesó en profundizar el conocimiento en los mecanismos de producción de almidón en plantas y microalgas con el objetivo de desarrollar herramientas para obtener almidones modificados para distintos fines industriales, alimenticios y bioenergéticos.

Hace siete años, un equipo de investigadores pertenecientes al Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI) dependiente del CONICET (www.conicet.gov.ar) comenzó a investigar las propiedades de las proteínas de síntesis y degradación de almidón de una planta modelo, Arabidopsis thaliana, con fines biotecnológicos. En el último año, el estudio se expandió a otro organismo fotosintético, cuyo uso no compite con la alimentación humana, el microalga Ostreococcus tauri. Esta alga es el organismo eucariota más pequeño que se conoce hasta la actualidad, y es una de las microalgas más abundantes de los sistemas oceánicos y costeros. Además es un importante modelo biológico utilizado en estudios genómicos y de fisiología vegetal en todo el mundo.

O. tauri presenta ciertas características particulares respecto a la producción de almidón. Este pequeño microalga, de genoma compacto y fácil de cultivar en laboratorios, acumula almidón en un único gránulo y presenta una ruta metabólica de almidón incluso más compleja que la de algunas plantas terrestres, con múltiples formas de cada enzima (http://learn.genetics.utah.edu/es/units/activities/extraction/enzyme.html). El estudio de este organismo nos permitirá generar herramientas moleculares de gran utilidad para diseñar la ingeniería de proteínas que eventualmente permita obtener almidones con cualidades mejoradas para diversos usos.
* La Dra. Barchiesi es investigadora del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Desempeña sus tareas en el Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), instituto de doble dependencia Universidad Nacional de Rosario - CONICET.

Fuente
secyt.unr.edu.ar

Virus Sincicial Respiratorio: convocan a participar en estudio para vacuna infantil

Un equipo de científicos en Rosario participa de un estudio internacional para desarrollar una vacuna pediátrica intranasal. El objetivo es ...